

ANNUAL REPORT

2022-23

WHEAT RESEARCH INSTITUTE,

AARI, Faisalabad

1

Table No.	Title	Page No
1	Introduction	5
2	Climate/weather	6
3	Bread wheat (<i>Triticum aestivum</i> L.)	7
4	Germplasm improvement and its maintenance	7
5	Filial generations	8
6	Screening trials	10
7	Yield trials	12
8	W heat agronomy	25
9	Seed production	26
10	Wheat entomology	28
11	Wheat pathology	33
12	Barley (<i>Hordeum vulgare</i> L.)	36
13	Durum wheat (<i>Triticum durum</i> desf.)	41
14	Wheat research sub-station, Murree	43
15	Cereal technology	44
16	Projects	60
17	Publications	65
18	Capacity building	68
19	Miscellaneous	69

LIST OF CONTENTS

Table No.	Title	Page No
1	Meteorological data during the wheat crop season 2022-23	6
2	Genetic diversity of different traits in crossing block during 2022-23	7
3	Genetic diversity in local land races during 2022-23.	7
4	Recorded traits in PBN during 2022-23	8
5	Study of filial generations for high yielding irrigated material	8
6	Detail of filial generations for drought tolerance	9
7	Study of filial generations for heat tolerance material	9
8	Selected entries of filial generations of durable rust resistance	10
9	Range of various traits under drought and normal conditions	11
10	Top five best performing genotypes under normal & rainfed conditions	11
11	Relative yield in normal and tunnel sets	12
12	Yield performance and related traits of promising lines in preliminary wheat yield trials (irrigated)	13
13	Yield performance and related traits of promising lines in regular wheat yield trials (irrigated)	15
14	Top fifteen high-yielding candidate lines in A-I Trial (rainfed)	17
15	Top fifteen high-yielding candidate lines in A-II Trial (Rainfed)	18
16	Top high-yielding candidate lines in -B Trial (Rainfed)	18
17	Yield performance advanced lines in short regular yield trial	21
18	PUWYT 2022-23 (grain yield: kg hac ⁻¹)	23
19	The performance of the promising candidate lines (contributed by WRI)	24
20	under irrigated conditions (23 locations) in Punjab The performance of the promising candidate lines (contributed by WRI) under rainfed conditions (6 locations) in Punjab	24
21	Effect of climate change on sowing time of wheat crop	25
21	Detail of single heads selected	26
22	Detail of selected single heads progenies	26
28	Pre basic and basic seed produced	28
25	Quantity of barley seed produced	27
26	Average wheat aphid population/ trap/week	28
27	Correlation of wheat aphid with climatic factors	29
28	Average aphid population per tiller on different wheat varieties / lines	29
29	Average aphid population per tiller on different wheat varieties/line (15-02-2023)	30
30	Average aphid population per tiller on different wheat varieties/lines (24-02-2023)	30
31	Average aphid population per tiller on different wheat varieties/lines (08-03-2023)	31
32	Average aphid population / tiller on wheat Germplasm	31
33	Average aphid population on different wheat varieties in different ecological zones (districts) of the Punjab	32
34	Isogenic lines showed resistant response to leaf and stripe rusts	33

LIST OF TABLES

Table No.	Title	Page No	
35	Advanced wheat lines showing acceptable rust reaction under stressed/rust	34	
	inoculated condition		
36	Efficacy of different fungicides against both leaf rust and stripe rust during cropping year 2022-23	35	
37	Traits recorded in barley crossing block	36	
38	Results (kg ha ⁻¹) of barley preliminary yield trials during 2022-23	37	
39	Results (kg ha ⁻¹) of barley regular yield trials (2022-23)	38	
40	Yield data (kgha ⁻¹) of barley advanced lines in rainfed condition (2022-23)	38	
41	Yield data (Kg ha ⁻¹) of barley advanced lines in PUBYT	39	
42	Yield (Kg ha ⁻¹⁾ data of National Uniform Barley Yield Trial (NUBYT)	40	
43	Details of filial generations of durum wheat	41	
44	Yield performance of promising durum lines in preliminary yield trials	42	
45	Yield performance of promising durum lines in regular yield trials	42	
46	Yield performance of promising durum lines in PUDYT	42	
47	Dithizone staining for zinc estimation in wheat	44	
48	Prussian blue procedure for iron estimation in wheat	44	
49	National Uniform wheat yield trials (Normal 2022-23)	45	
50	National Uniform wheat yield trials (Rainfed 2022-23)	49	
51	Punjab Uniform wheat yield trials (Normal 2022-23)	52	
52	Punjab Uniform wheat yield trials (Rainfed 2022-23)	54	
53	Quality traits in advanced lines of barley	55	
54	Effect of sowing dates on thousand grain weight (g)	56	
55	Effect of sowing dates on test weight (g)	56	
56	Effect of sowing dates on starch percentage	57	
57	Effect of sowing dates on protein percentage	57	
58	Effect of sowing dates on gluten percentage	58	
59	Impact of tempering conditions on milling yield and rheology of flour	58	
60	Sensory evaluation of chapatti & bread from aleuron flour	59	
61	Data of agronomic parameters	59	
62	Data of quality parameters	60	
63	Details of filial generations		
64	Detail of filial generations for waterlogging tolerance		
65	High yielding advanced lines in A-trials	62	
66	Regular yield trials (2022-23)	62	
67	Morphological and yield contributing traits of selected genotypes	64	

INTRODUCTION

Wheat Research Institute, AARI, Faisalabad, Pakistan has a very splendid past and present since its foundation (1906) as Cereal Section. Wheat is the most vital crop of Pakistan and considered as a security pillar. Wheat production and yield is less as compared to the potential due to number of abiotic stresses (heat, salt, drought etc.) and biotic stresses (rusts, smuts, bunts, blight, aphid etc.). The scientists of this institute have been employed to develop and release bread wheat, durum and barley varieties having better yield, quality and resistant to biotic and abiotic stresses.

WRI paid more than sixty-nine varieties of bread wheat, three varieties durum wheat and seven varieties of barley so far. Out of these varieties, Chenab-70, Pak-81, Inqilab-91, Seher-06, Faisalabad-08, Galaxy-13, Akbar-19 of wheat, Haider-93, of barley and durum-97 of durum endured as the super wheat varieties of Pakistan. This institute has released six wheat varieties (Anaj-17, Akbar-19, Dilkash-20, Subhani-21, MH-21 and Arooj-22) and five barley varieties (Sultan-17, Jau-17, Jau-21 and Talbina-21) and one durum variety (durum-21) during the last five years. The varieties released up till now are contributing a significant share for increasing wheat, barley and durum yield and production of the country in general and Punjab in explicit.

WRI is focusing five disciplines (breeding, pathology, entomology, agronomy and cereal technology) are working in the institute. Breeding however, is an essential part of its research work as it focusses on various aspects of wheat crop.

The Institute has strong collaboration with key national and international institutes; like CIMMYT, Mexico, PBI, Australia, FAO, Rome, ICARDA, Lebanon, UC, Davis, USA, CIAT, Colombia, IFPRI, Washington, USA, KARI, Kenya, UMN, USA. These international institutes provide novel germplasm and training and financial assistance to the researchers. These struggles are being made to progress from green revolution to the gene revolution. Seventy-two experiments in different research areas like breeding, pathology, entomology, crop management and quality have been planned by Wheat Research Institute, Faisalabad during the year of 2022-23. Different PARB projects were also conducted by this institute. WRI, Faisalabad contributed six advanced lines of bread wheat, three of durum and two of barley in National Uniform Yield Trials (2023-24). Currently two advanced lines of wheat are in the final process of variety approval.

CLIMATE/WEATHER

In the field of crop science, weather data play a pivot role. Unpredicted weather nastily affronts the wheat crop and vice versa. Therefore, by keeping in mind the weather conditions researchers make frequent routine decisions related to agronomic practices.

Rainfall in the month of January 2023 and February 2023 displayed positive effects on wheat crop. The suitable temperature in the month of March and April showed significant effect on heading and flowering stage also. At nearly every stage of growth, wheat is generally sensitive high temperatures especially at reproductive stages (pre and post anthesis). If the period of high temperature will withstand shorter at this stage, there will be the more wheat yield and production. Four frosty nights and two frosty days in months of January 2023 were observed which promoted tillering capacity. The meteorological data is shown in the table 1.

Months	Air T (C	emp. ²⁰)	Hum		(mm) Sunshine					(mm) Sunshine	Frosty nights	Frosty days
	Ave Max	Ave Min	8 am	5pm		H:M						
Oct. 2022	33.5	17.7	72.7	47.2	0	8:38	0	0				
Nov. 2022	28.2	12.4	81.5	51.3	4	6:56	2	2				
Dec. 2022	21.8	7.4	87.2	58.9	2.3	5:33	2	1				
Jan. 2023	18.4	4.8	84.7	55.9	30.7	4:49	4	2				
Feb. 2023	26.1	10.7	77.3	44.5	6.4	6:57	2	1				
March 2023	25.8	15.3	82.7	56.7	55.2	6:45	8	1				
April 2023	33.5	18.4	65.3	43.8	42.8	8:39	6	0				

 Table 1: Meteorological data during the wheat crop season 2022-23

BREAD WHEAT (*Triticum aestivum L.*) GERMPLASM IMPROVEMENT AND ITS MAINTENANCE (a)-Crossing Block

The key aims of crossing block was to preserve germplasm with their distinctive traits and to combine high yield, adaptability and tolerance to biotic and abiotic stresses characteristic. Germplasm improvement and maintenance offers a chance to integrate the wanted genes in the current varieties with the help of hybridization. In order to ease crossing process and to synchronize male and female parents, crossing blocks were planted twice (1st and 3rd week of November 2022) in which each entry was planted in paired row plots of 2.5 m length. The crossing Block composed of different groups viz; current varieties (45), exotic lines (18), disease resistant (34), drought tolerant (94), salt tolerant (7), heat tolerant (59), grain quality (17), high yielding (2), Misc (128). Data were recorded for 12 different traits. About 1000 target crosses were made keeping in view different objectives like higher yield, heat, drought, disease resistance and acceptable quality (table 2).

Traits	Range	Traits	Range
Days to heading	91-110	Tillers plant ⁻¹	8.7-22.3
Days to maturity	113-151	1000 grain weight (g)	17.0-50.2
Plant height (cm)	50-127	Leaf and yellow rusts	0-100S
Canopy temperature (⁰ c) 14.0-17.2 (booting)		NDVI range (booting)	0.70-0.82
Leaf color (light green, me orientation (droopy, semi c	Wide range		

 Table 2: Genetic diversity of different traits in crossing block during 2022-23.

(b)-Local land races

Local land races with enhanced levels of resistance/tolerance to multiple stresses provide important source of genetic diversity for crop improvement. However, their exploitation for cultivar improvement is limited by crossing incompatibility barrier and linkage drags. Wild crosses are capable of enhancing diversity in wheat but still requiring further breeding selection to generate varieties with elite performance for sustainable national food security. A total number of 45 land races were plated and tested for agronomic and pathological traits. The genetic diversity of these traits is table 3.

Sr. No.	Traits	LLR Range			
1	Plant height (cm)	80-145			
2	Days to heading	95-113			
3	Days to maturity	117-148			
4	Tiller plant ⁻¹	11-18.8			
5	1000 grain wt	24-44			
6	Leaf & yellow rust reactions	0- 100 S			
7	Leaf color, size & orientation	Wide range			

 Table 3: Genetic diversity in local land races during 2022-23.

(c)-Pre-breeding nursery

Pre breeding include all the activities related to the identification of desirable traits from the other unadopted materials and transfer these traits to an intermediate set of materials that breeders can use further in producing new varieties for farmers. During 22-23 pre breeding nursery was consisted of 136 top performing lines incorporated from different sources in which each entry was planted in paired row plots of 2.5 m length. These top performing lines were characterized for different traits (table 4) and will be further used in hybridization program.

Table 4. Recorded traits in 1 bit during 2022-25.					
Traits	Days to maturity	Tillers plant ⁻¹	Plant height (cm)	Yield (g)	
Range	147-138	160-90	100-70	998-400	

Table 4: Recorded traits in PBN during 2022-23.

Crossing block, pre breeding nursery and local land races entries showed a wide range of variability for each trait viz, leaf color (light green, medium. dark), leaf size (broad, medium, narrow) & leaf orientation (droopy, semi droopy, erect, semi erect) with disease reaction for leaf and yellow rust were in 0-100 S range.

FILIAL GENERATIONS

(a)-Filial generations for high yielding irrigated material

About 214 fresh crosses of high yielding and rust resistance were attempted. In F_1 , 244 crosses were studied, and 199 crosses were selected. F_2 generation was planted with 1.8 x 6m plot size. F_2 contained 233 entries and 146 entries were selected. F_3 contained 184 entries and 121 entries were selected. From F4, 88 entries were selected out of 178 entries. While F5 contained 49 crosses out of which 34 crosses and 627 head rows were selected. F6 generation was sown with plot size of 1 row x 2.5 m. F6 contained 1605 entries from which 111 entries were selected. F_7 generation was advanced by adopting selected bulk method. In F_7 , 111 lines were tested, out of which 61 lines were selected and promoted for preliminary yield trials. Genotypes studied and selected in filial generations for high yield material under irrigated conditions are shown in the following table.

Filial Generations	Genotypes studied	Genotypes selected
F1	244	199
F ₂	233	146
F ₃	184	121
F4	178	88
F ₅	49 crosses	34 crosses, 627 heads
F ₆	1605	111
F ₇	111	61

 Table 5: Study of filial generations for high yielding irrigated material

(b)-Filial generations for drought tolerance material Filial generations $(F_0.F_7)$

Two hundred single (F_0 generation) and sixty top crosses were attempted, out of which 157 single and 56 top crosses were harvested. F_1 generation was planted in irrigated condition so that sufficient seed may be produced. F_2 to F_7 were planted in rainfed conditions and these generations were exposed to artificial rusts inoculated conditions. Entries/plants exhibiting drought tolerance, desirable plant height and diseases resistance were selected using selected bulk. The breeding material was planted during last week of October, 2022 and fertilized @120:90:60 N: P: K kg ha⁻¹at sowing time. Plot size of F_2 - F_7 was 1.8x6m while single row of F_6 was sown in 2.5m length. 213, 287, 245, 183, 157, 3500, 353 and 51 entries from F_0 to F_7 entries were selected, respectively (table 6).

Generations	Entries studied	Entries selected
F ₀	260	213
F1	315	287
F_2	295 SHB	245 SHB
F ₃	204 SHB	183 SHB
F_4	204 SHB	157 SHB
F ₅	190 SHB	132/3500 SH
F ₆	83/5505SHR	34/353 SHRP
F ₇	143	51

 Table 6: Detail of filial generations for drought tolerance during 2022-23

SHB= Single head bulk, and SHRP=Single head row progeny, SHR=Single head rows

(c)-Filial generations for heat tolerance material

Two hundred and fourteen fresh crosses for heat tolerance were harvested. F_1 generation was sown during 2nd week of November 2022 with the plot size of 1x2.5m. F_2 - F_6 generations were sown during first week of December 2022. Plot size of F_2 - F_5 was 1.8x6m while single row of F_6 was sown of 2.5 m length. Data regarding disease incidence and plant type was recorded. At maturity, single heads from desirable plants of F_2 , F_3 and F_4 were bulked to raise successive generations. The selected material was finally evaluated on visual grain basis. For generation advancement, the following table depicts the number of entries selected out of studied entries in each filial generation.

Table 7. Study of final generations for near toterance materia					
Filial	Entries studied	Entries selected			
Generations					
F ₂	230	179			
F ₃	127	92			
F_4	81	47			
F ₅	152	101, 1618			
F ₆	2006	84			
F ₇	130	49			

 Table 7: Study of filial generations for heat tolerance material

(d)-Filial Generation of durable rust resistance

About 100 fresh crosses of high yielding durable rust resistance were attempted. F_1 generation was sown during 2nd week of November 2022 with plot size of 1 row x 2.5 m. In F_1 , 226 crosses including top crosses were studied and 160 crosses were selected. F_2 to F_7 were planted with 1.8*6m plot size in irrigated conditions and these generations were exposed to artificial rusts inoculated conditions. Single head row of F_6 was sown in 2.5m length on the same date and fertilized @120:90:60 N: P: K kg ha⁻¹ at sowing time. Data regarding diseases incidence and plant type were recorded. At maturity, single heads from desirable plants of F_2 , F_3 and F_4 were bulked to raise successive generations. The selected material was finally evaluated on grain yield and visual grain basis. Entries selected from F_7 generation were promoted to preliminary yield trial. Results of different generations are given in table 8.

Generations	Entry		
	Tested	Selected	
F_1	226	160	
F ₂	213	135	
F ₃	98	66SHB	
F_4	149	75SHB	
F ₅	91	76/1385	
F ₆	42/1547	32/60SHR	
F ₇	24/63	19/26SHRP	

Table 8: Selected entries of filial generations of durable rust resistance.

(e)-Filial generations of salt tolerance

Thirty fresh crosses of high yielding salt tolerance were harvested. 118 F_1 crosses were studied which were sown on 11th of Nov with plot size of 1 row x 2.5 m. Among them 109 crosses were selected. F_2 generation was sown with 6rows x 5m plot size. F_2 contained 40 entries and 29 entries were selected. F_3 was planted following 5rows x 5m plot size and 59 entries were studied from which 49 entries were selected for further evaluation while in F_4 40 entries were studied and 25 were selected.

SCREENING TRIALS

(a)-Drought tolerance

Screening Bread Wheat Germplasm for Drought Tolerance

Forty-eight wheat genotypes were sown in plot size of 1 row of 2.5-meter length. The experiment was sown in RCBD design under normal irrigation and water stress conditions. Akbar-19 and Arooj-22 were used as check varieties. Range of various traits under drought and normal conditions are given in table 9.

S. No.	Traits	Normal	Rainfed
1	Days to heading	100-123	96-113
2	Germination (%)	80-90	70-85
3	Days to maturity	136-146	130.5-143
4	Plant height (cm)	88-120	80-110
5	Flag leaf area (cm ²)	39-140	29-94
6	Canopy temperature (°C)	13.5-18.6	14.9-19.7
7	NDVI	0.70-0.85	0.65-0.80
8	Spike length (cm)	10.5-17.1	9.8-15.6
9	Thousand grain weight (g)	30-56	23-47
10	Grain yield (Kg ha ⁻¹)	3865.7-7291.5	1586.3-3732.4

Table 9: Range of Various Traits under drought and normal conditions.

The high yielding genotypes than the best check variety under normal and rainfed conditions in each block are given as under;

Γ

		KAINFED							
S. No.	Code	Parentage/Pedigree	Yield (Kg ha ⁻¹)						
1	V-21291	BECARD/FRNCLN//KACHU/KIRITATI/3/BOKOTA							
		CMSS14B01372T-099TOPY-099M-0SY-38M-0WGY	3732.4						
2	V-21522	WBLL1*2/BRAMBLING*2//BAVIS*2/3/CHYAK1/VILLA JUAREZ F2009//WBLL1*2/BRAMBLING							
		CMSS13B01606T-099TOPY-099M-099NJ-099NJ-3Y-0WGY							
3	V-21533	KACHU/DANPHE*2//BORL14							
		CMSS14Y01482T-099TOPM-099Y-099M-0SY-34M-0WGY	3612.4						
4	V-21665	MUCUY*2//SUP152/BAJ #1							
		CMSS13B01217T-099TOPY-099M-099NJ-099NJ-27Y-0WGY	3265.6						
5	V-21542	BOKOTA/MUCUY							
		CMSS14B00062S-099M-0SY-6M-0WGY	3132.6						
Chec	Check Akbar-19								
		Arooj-22	1586.3						
CV (%) = 12.26, I	LSD(0.05) = 362.99							
		NORMAL							
S. No.	Code	Parentage/Pedigree	Yield (Kg ha ⁻¹)						
1	V-21542	BOKOTA/MUCUY							
		CMSS14B00062S-099M-0SY-6M-0WGY	7091.56						
2	V-21261	NADI#2//TRCH/HUIRIVIS #1/3/NADI#1							
		CMSS12Y00880T-099TOPM-099Y-099M-0SY-17M-0WGY	6904.94						
3	V-20097	WEEBILL-1/8/BABAX/LR43//BABAX/6/MOR/VEE#5//							
		DUCULA/3/DUCULA/4/MILAN/5/BAU/MILAN /7/SKAUZ/BAV92							
		PB13Ht000250-0A-0A-0A-17A-0A	6704.99						
4	V-20580	MUTUS*2/MUU//2*MUCUY							
		CMSS13Y01148T-099TOPM-099Y-099M-0SY-16M-0WGY	6625.01						
5	V-21533	KACHU/DANPHE*2//BORL14							
		CMSS14Y01482T-099TOPM-099Y-099M-0SY-34M-0WGY	6291.76						
	Check	Akbar-19	5491.9						
		Arooj-22	7291.5						
CV (%) = 10.32, I	LSD(0.05) = 242.59							

 Table 10: Top five best performing genotypes under normal & rainfed conditions.

 RAINFED

(b)-Heat tolerance study

Twenty-one bread wheat genotypes were sown in 2 rows of 2.5-meter length inside and outside tunnel on 3rd week of November 2022. The same set was sown late on 2nd December 2022. Post anthesis heat shock was imposed by covering the tunnel with polypropylene sheet for about three weeks after anthesis. Out of 21 entries, 9 entries performed well in all three (normal, stress and late) sets than the check variety (Dilkash-20). Relative yield in normal and tunnel sets is given in table 11.

Genotypes	Relative Yield in	Relative Yield in
	tunnel set vs	late set vs
	normal	normal
V-20337	0.89	0.73
V-20611	0.89	0.73
V-21443	0.95	0.62
HYT-100-76	0.83	0.59
V-19317	0.81	0.62
HYT-100-47	0.80	0.58
V-19308	0.80	0.53
V-21433	0.73	0.49
V-20613	0.70	0.60
Dilkash-20	0.71	0.57

Table 11: Relative yield in normal and tunnel sets

YIELD TRIALS

Station Yield Trials

The most promising lines selected from different sources i.e. F₇ generation, International nurseries/ trials, drought, heat stress and plant pathology program were evaluated in station yield trials.

(a)-Preliminary wheat yield trials (irrigated)

In irrigated preliminary yield trials (A-trials), 216 advance lines were evaluated, using Alpha Lattice Design with two replications, in four trials (54 test entries and 2 check varieties Akbar-19 and Arooj-22, in each trial) and 11 advance lines were evaluated using randomized complete block design with two replications, compared with check varieties viz. Akbar-19 and Arooj-22. Trials were planted on November 08, 2022 with plot size of 6m x 1.62m and harvested plot size was 5m x 1.62m. Fifty-two advance lines performed better than the one or both the check varieties on the basis of better grain yield and desirable diseases tolerance. The selected advance lines will be studied further in Regular Wheat Yield Trials. The respective data of days to 50 % heading, days to maturity, Reproductive phase (days), plant height, diseases reaction and grain yield of selected entries is given in the table 12.

A-1 ((Normal)			v		,			
Sr.	V-Code	Entry	Days to	Days	Reproduc	Plant	Disease H	Reaction	Grain
No.			50% Heading	To Maturity	tive Phase (Days)	Height (cm)	Leaf Rust	Yellow Rust	Yield (kg ha ⁻¹)
1	V-22034	35	109	150	41	97	10M	20M	5834
2	V-22005	5	107	151	44	110	20MS	10M	5544
3	V-22014	15	108	149	41	89	10M	0	5536
4	V-22028	29	107	152	45	97	10RMR	20M	5440
5	V-22009	10	109	149	40	105	20M	30M	5412
6	V-22013	14	109	150	41	107	20MS	0	5329
7	V-22033	34	103	151	48	111	30M	0	5277
8	V-22015	16	106	149	43	99	30MS	0	5267
9	V-22006	6	107	150	43	107	10M	5M	5223
A	rooj-22	40	107	151	44	97	20M	0	5220
(Check)								
10	V-22011	12	109	152	43	111	0	20M	5201
11	V-22044	46	110	150	40	95	30M	TR	5199
12	V-22017	18	105	151	46	102	10M	10MR	5160
13	V-22020	21	109	151	42	99	10MS	0	5152
14	V-22035	36	103	151	48	87	0	0	5144
15	V-22042	44	107	150	43	105	30M	TR	5138
16	V-22004	4	107	151	44	104	20MSS	20M	5093
17	V-22010	11	109	151	42	107	20MS	20M	5037
(kbar-19 Check)	8	103	150	47	90	5M	20RMR	5035
LSI	$O(kg ha^{-1}) = 4$	-19.33, (CV (%) = 4.33						

 Table 12: Yield performance and related traits of promising lines in preliminary wheat yield trials (irrigated)

A-2 (Normal)								
Sr.	V-Code	Entry	Days to 50%	Days to Maturity	Reproduc tive Phase	Plant Height	Disease 1	Reaction	Grain Yield (kg
No.			Heading	Maturity	(Days)	Height (cm)	Leaf Rust	Yellow Rust	ha ⁻¹)
1	V-22099	47	109	150	41	98	10M	60M	5691
2	V-22059	5	109	151	42	100	0	20MR	5565
3	V-22065	12	109	151	42	96	0	0	5552
4	V-22084	31	110	151	41	93	0	30M	5471
5	V-22103	51	109	151	42	92	0	20M	5461
6	V-22097	45	109	150	41	99	0	20M	5454
7	V-22057	3	109	151	42	94	0	10M	5260
8	V-22079	26	101	151	50	98	0	10M	5259
9	V-22095	43	109	150	41	89	0	0	5203
10	V-22066	13	109	151	42	105	0	0	5186
A	Arooj-22		106	150	44	97	20M	0	5172
(((Check)								
11	V-22085	32	110	151	41	96	30MS	5M	5127
12	V-22068	15	109	150	41	91	0	0	5101

13	V-22069	16	107	149	42	98	10MR	0	5058		
14	V-22067	14	109	151	42	93	0	0	5036		
Akbar-19		8	101	149	48	91	5M	20RMR	5015		
(Check)											
LSD	LSD (kg ha ⁻¹) = 415.22, CV (%) = 4.06										

A-4 (1	A-4 (Normal)												
Sr.	V-Code	Entry	Days to	Days to	Reproduc	Plant	Disease	Reaction	Grain				
No.			50% Heading	Maturity	tive Phase (Days)	Height (cm)	Leaf Rust	Yellow Rust	Yield (kgha ⁻¹)				
1	V-22197	36	110	151	41	92	10M	0	5962				
2	V-22189	28	107	151	44	100	20M	10M	5891				
3	V-22194	33	107	150	43	103	20M	0	5806				
4	V-22184	23	101	150	49	95	10M	0	5725				
5	V-22196	35	103	150	47	86	10M	0	5669				
6	V-22204	44	108	150	42	83	20M	40M	5636				
7	V-22183	22	107	150	43	96	10M	0	5635				
8	V-22174	13	103	150	47	78	0	0	5580				
9	V-22206	46	106	150	44	89	20M	10M	5542				
10	V-22192	31	110	151	41	96	20M	0	5423				
11	V-22169	7	103	150	47	92	0	0	5381				
12	V-22186	25	109	150	41	95	0	0	5364				
13	V-22214	54	101	149	48	88	0	0	5343				
14	V-22198	37	108	150	42	102	20M	0	5276				
15	V-22202	42	109	151	42	86	30MSS	0	5234				
	kbar-19 Check)	8	101	150	49	90	5M	20RMR	5190				
16	V-22215	55	101	150	49	81	30M	0	5153				
17	V-22193	32	110	150	40	101	0	0	5127				
A	Arooj-22 40 10		106	150	44	95	20M	0	5104				
(Check)												
LSD ($(kg ha^{-1}) = 39$	9.36, CV	(%) = 3.73										

A-5 ()	Normal)										
Sr.	V-Code	Entry	Days to	Days to	Reproduc	Plant Usiaht	Disease R	leaction	Grain		
No.			50% Heading	Maturity	tive Phase (Days)	Height (cm)	Leaf Rust	Yellow Rust	Yield (kgha ⁻¹)		
1	V-22224	10	110	151	41	103	10MR	0	5672		
2	V-22223	9	107	150	43	103	10MR	10M	5635		
A	rooj-22	8	107	150	43	97	20M	0	5496		
(Check)										
3	V-22222	7	109	151	42	112	0	10M	5411		
4	V-22220	5	108	151	43	93	20M	0	5388		
Α	Akbar-19		102	150	48	95	5M	20RMR	5354		
(Check)											
LSD (LSD (kg ha ⁻¹)= 377.87, CV (%)= 344										

(b)-Regular wheat yield trial (B-Trial)

Two hundred and sixty nine promising advance lines were selected from different breeding programs and were evaluated in regular yield trials (B-trials) under normal planting time (on November 08, 2022) and irrigated conditions, to assess their grain yield potential and diseases tolerance. The trials were conducted using Alpha Lattice Design with two replications, and performance was compared with check varieties viz. Akbar-19, Arooj-22. Forty-nine advance lines have been selected, keeping in view better grain yield than the higher yielding check and desirable diseases tolerance, for further study and out of these forty-nine lines, the selected ones with be evaluation in multi-location Punjab Uniform Wheat Yield Trials. The respective data of days to 50 % heading, days to maturity, reproductive phase (days), plant height, diseases reaction and grain yield of selected entries is given in the table 13.

Sr.	V-Code	Entry	Days to	Days to	Reproduct	Plant	Disease	Reaction	Grain
No.			50% Heading	Maturity	ive Phase (Days)	Height (cm)	Leaf Rust	Yellow Rust	Yield (kg ha ⁻¹)
1	V-21170	25	107	150	43	115	0	10M	5793
2	V-21086	20	110	151	41	97	10M	20M	5737
3	V-21049	16	105	151	46	106	10M	30M	5460
4	V-21205	43	107	152	45	103	20M	10M	5441
5	V-21187	33	103	151	48	102	0	10M	5282
6	V-21207	45	107	152	45	98	10M	10M	5270
7	V-21194	36	104	151	47	83	20M	20M	5210
Aroo	j-22 (Check)	40	108	152	44	105	20M	0	5210
Akba	r-19(Check)	8	101	150	49	102	5M	20RMR	4908
LSD ($(\text{kg ha}^{-1}) = 365$.46, CV (%) = 3.59						
B-2 (1	Normal)								
Sr.	V-Code	Entry	Days to	Days to	Reproduct	Plant	Disease Reaction		Grain
No.			50%	Maturity	ive Phase	Height	Leaf	Yellow	Yield

 Table 13: Yield performance and related traits of promising lines in regular wheat yield trials (irrigated)

Heading $(kgha^{-1})$ (Days) (cm)Rust Rust V-22246 23 106 151 45 77 10M 20M 5828 Arooj-22 (Check) 40 104 151 47 90 20M 5299 0 8 149 49 Akbar-19(Check) 100 88 5M 20RMR 5062 LSD (kg ha⁻¹) = 408.09, CV (%) = 4.33

B-3 (Normal) Entry Sr. V-Code Days to Davs to Reproduct Plant **Disease Reaction** Grain 50% Maturity Height Yield No. ive Phase Leaf Yellow (kgha⁻¹) Heading (Days) (**cm**) Rust Rust V-22287 45 10 107 152 84 30M 5631 1 0 2 V-22328 52 151 40 90 20M 40M 5581 111 3 V-22301 24 100 150 50 0 0 5338 87

4	V-22289	12	107	153	46	100	0	0	5322	
5	V-22288	11	101	150	49	82	30M	20M	5314	
6	V-22302	25	100	150	50	75	0	0	5305	
7	V-22303	26	99	150	51	100	0	TMR	5262	
8	V-22292	15	104	151	47	80	20M	10M	5157	
9	V-22311	34	101	151	50	100	20M	0/40MS	5132	
10	V-22297	20	107	151	44	95	10M	10M	5121	
11	V-22295	18	107	152	45	95	0	0	5035	
12	V-22305	28	104	149	45	90	0	0	4988	
Akbar-19(Check)		8	103	151	48	81	5M	20RMR	4983	
Aroo	j-22 (Check)	40	106	150	44	97	20M	0	4965	
LSD (kg ha ⁻¹) =350.93, CV (%) = 3.65										

B-4 (1	Normal)											
Sr.	V-Code	Entry	Days to	Days to	Reproduct	Plant	Disease	Reaction	Grain			
No.			50% Heading	Maturity	ive Phase (Days)	Height (cm)	Leaf Rust	Yellow Rust	Yield (kgha ⁻¹)			
1	V-21541	21	103	151	48	82	0	5M	6235			
2	V-21551	26	101	150	49	98	0	0	6227			
3	V-21542	22	101	150	49	100	0	0	6207			
4	V-21547	24	104	149	45	100	10M	5M	6199			
5	V-21532	15	102	150	48	90	20M	40M	6108			
6	V-21573	32	106	152	46	97	10MS	0	6091			
7	V-21579	37	100	150	50	86	10M	10M	6073			
8	V-21576	35	101	151	50	104	10MS	5M	6048			
9	V-21574	33	106	151	45	97	10M	0	6046			
10	V-21545	23	102	149	47	98	10M	0	6043			
11	V-21517	7	101	151	50	82	0	0	5995			
kbar	-19 (Check)	8	103	149	46	92	5M	20RMR	5922			
Aroo	j-22 (Check)	40	107	150	43	86	20M	0	5332			
LSD	LSD (kg ha ⁻¹) = 408.00, CV (%) = 3.51											

B-5 (N	Normal)								
Sr.	V-Code	Entry	Days to	Days to	Reprod	Plant	Disease	Reaction	Grain
No.			50% Heading	Maturity	uctive Phase (Days)	Heigh t (cm)	Leaf Rust	Yellow Rust	Yield (kgha ⁻¹)
1	V-20580	48	106	150	44	93	10M	5M	6150
2	V-22664	32	105	152	47	80	10M	10M	6040
3	V-21237	36	107	151	44	88	20MSS	20M	5944
4	V-20170	49	105	151	46	90	10M	0	5941
5	V-21665	52	107	151	44	100	10M	10M	5893
6	V-21256	44	106	151	45	95	0	10MR	5829
7	V-22652	20	104	150	46	101	0	0	5792
8	V-22661	29	107	152	45	96	10M	0	5756
9	V-22659	27	107	151	44	90	10M	20M	5698
10	V-21669	45	107	151	44	88	0	0	5650
11	V-22644	12	105	151	46	116	10M	20M	5638
12	V-20572	47	110	152	42	97	0	0	5567

13	V-22646	14	102	149	47	91	0	20M	5562	
14	V-22663	31	108	151	43	87	20MS	0	5560	
15	V-20550	46	107	151	44	102	0	10M	5536	
16	V-22667	35	106	150	44	90	10M	10M	5531	
17	V-22645	13	102	150	48	90	10M	10M	5523	
18	V-22647	15	107	149	42	92	10M	0	5501	
Aroo	j-22 (Check)	40	107	150	43	93	20M	0	5500	
Akba	r-19 (Check)	8	102	150	48	93	5M	20RMR	5409	
LSD (kg ha ⁻¹)=388.55, CV (%)= 3.32										

(c)- Preliminary yield trial (Rainfed)

A-Trial (Rainfed)

In A-I trial 22 advanced lines (out of 71) were found high yielding than the check varieties (Dilkash-20 & MA-21) under rainfed conditions (table 14).

	A-I (Rainf	ed)	Dilkash-20	MA-21	YR	LR
			3169	1706		
S.	Variety	Yield	Percentage	e increase		
No.	Code	(kg ha ⁻¹)	over check	x varieties		
1	V-22528	4101.2	29.41	139.51	40M	0
2	V-22526	3954.3	24.78	130.93	30M	10M
3	V-22521	3845.7	21.35	124.59	0	20M
4	V-22516	3785.2	19.44	121.05	0	10MR
5	V-22543	3722.2	17.45	117.38	30M	10M
6	V-22546	3722.2	17.45	117.38	30M	0
7	V-22523	3718.5	17.34	117.16	30M	10M
8	V-22525	3635.8	14.73	112.33	30M	5MR
9	V-22550	3583.9	13.09	109.30	TM	10M
10	V-22508	3477.8	9.74	103.10	40M	40M
11	V-22532	3448.1	8.80	101.37	30M	0
12	V-22522	3334.6	5.22	94.74	0	10M
13	V-22571	3330.9	5.10	94.52	0	20M
14	V-22534	3285.2	3.66	91.85	0	10MS
15	V-22503	3266.7	3.08	90.77	0	0
CV = 1	4.5, LSD = 40)3.22				

Table 14: Top fifteen high-yielding candidate lines in A-I Trial (rainfed) 2022-23

In A-II trial 28 advanced lines (out of 71) were found high yielding than all the check varieties (Akbar-19, Dilkash-20 & MA-21) under rainfed conditions as given below,

	A-II (l	Rainfed)	Akbar-19	Dilkash-20	MA-21	YR	LR
			3106.2	3127.2	2902.5		
S.	Variety	Yield	Perc	entage increas	se		
No.	Code	(kg ha ⁻¹)	over	check varietie	es		
1	52	4482.7	44.3	43.3	54.4	0	0
2	49	4049.2	30.4	29.5	39.5	10M	0
3	17	4035.8	29.9	29.1	39.0	20M	0
4	37	3893.8	25.4	24.5	34.2	0	0
5	23	3872.8	24.7	23.8	33.4	10M	10M
6	5	3872.2	24.7	23.8	33.4	40M	30M
7	9	3797.5	22.3	21.4	30.8	10M	0
8	34	3770.4	21.4	20.6	29.9	0	30M
9	25	3754.3	20.9	20.1	29.3	0	10M
10	13	3709.9	19.4	18.6	27.8	0	20MS
11	35	3701.2	19.2	18.4	27.5	10M	20MSS
12	11	3551.9	14.3	13.6	22.4	10M	0
13	41	3494.4	12.5	11.7	20.4	0	20M
14	24	3435.8	10.6	9.9	18.4	10M	0
15	29	3354.3	8.0	7.3	15.6	0	0
CV =7	.42 , LSD =	231.40					

 Table 15: Top fifteen high-yielding candidate lines in A-II Trial (Rainfed) 2022-23

Regular Yield Trial (B-Trials), Rainfed

In regular yield trials under drought conditions, two hundred and sixty- nine entries were tested following alpha lattice design with two replications and with two check varieties i.e. Akbar-19 and Arooj-22 in five regular (B-I to B-V) trials. The best performing entries in all the regular trials under drought conditions on the basis of yield potential and rust resistance are given as under;

	Variety	Parentage/Pedigree	Yield		Reaction
Sr.	Code		(kgha ⁻¹)	202	2-23
No.			Rainfed	Lr	Yr
B-I					
1	V-21187	TACUPETO F2001*2/KIRITATI//BLOUK	4869.1	0	10M
		#1/3/WBLL1*2/BRAMBLING*2//BAVIS			
		CMSS14Y00189S-099Y-099M-0SY-5M-0WGY			
2	V-21034	NSM*4/14-2//FRTL/2*PIFED/3/VORB /4/	4501.4	30M	0
		NR 384(Lr37/Yr17/Sr38)			
		PB14177-OA-OA-0A -26A-0A			
Chec	k	Arooj-22	5159.3		
		Akbar-19	4351.2		
LSD	(0.05) = 442	2.70, CV (%) = 11.79			
B-II					
1	V-22250	KACHU*2/3/ND643//2*PRL/2*PASTOR*2/4/	4523.5	0	10M
		KFA/2*KACHU			
		CMSS14B01580T-099TOPY-099M-099NJ-			
		099NJ-26Y-0WGY			

Table 16: Top high-yielding candidate lines in -B Trial (Rainfed) 2022-23

2	V-22246	SHORTENED SR26 TRANSLOCATION	4498.8	10M	20M
L	v-22240	//2*WBLL1*2/KKTS/3/BECARD/4/2*BORL14	4490.0	10101	20101
		CMSS14B01498T-099TOPY-099M-099NJ-			
		099NJ-36Y-0WGY			
3	V-22276	WBLL1//PUB94.15.1.12/WBLL1/3/BORL14	4404.3	0	0
5	V-22270	PTSS17Y00032S-0B-099Y-099M-3Y-0B-0Y	++0+.5	U	0
4	V-21225	MUNAL #1/FRANCOLIN #1*2/3/ATTILA*2	4382.7	10M	0
•	V 21225	/PBW65//MURGA	1502.7	10101	Ŭ
		CMSS12Y00701T-099TOPM-099Y-099M-			
		099NJ-099NJ-20Y-0WGY			
5	V-22232	PAURAQ/NELOKI/3/WBLL1*2/BRAMBLING	4300.0	20M	0
		*2//BAVIS			
		CMSS14Y00584S-099Y-099M-099NJ-099NJ-			
		14Y-0WGY			
6	V-22254	NUWEST/4/D887.74/PEW/3/LNCR//CARSTEN/	4266.7	0	0
		GGT/5/MRS/CItr 14482//OWW68007			
		/3/RONDEZVOUS/6/BECARD*2/DANPHE #1			
		/7/BOKOTA			
		CMWS14B00042T-099TOPY-099M-099NJ-			
		099NJ-16Y-0WGY			
7	V-22230	BORL14//BECARD/QUAIU #1	4151.9	0	30M
		CMSS12Y00070S-099Y-099M-099NJ-099NJ-			
		21Y-0WGY			
Chee	ck	Arooj-22	3991.4		
		Akbar-19	3307.4		
LSD	0(0.05) = 49	6.43, CV (%) = 14.12			
B-II	Ι				
1	V-21503	NADI/COPIO//NADI#2	4438.3	30MS	30M
		CMSS11B00910T-099TOPY-099M-099NJ-			
		099NJ-37WGY-0B			
2	V-22311	MEX94.27.1.20/3/SOKOLL//ATTILA/3*BCN/4/	4133.3	20M	0/40MS
		PUB94.15.1.12/WBLL1/5/MUCUY			
3	V-22287	MILAN/KAUZ//PRINIA/3/BAV92/4/WBLL1*2/	4034.6	30M	0
		KUKUNA/5/KACHU*2/FRNCLN			
		PTSS17Y00209S-0B-099Y-0M-34Y-0Y			
4	V-22310	MUNAL*2/CHONTE*2/3/SWSR22T.B./2*	3861.7	10M	60M
		BLOUK #1//WBLL1*2/KURUKU			
		CMSS14B01547T-099TOPY-099M-099NJ-			
		099NJ-43Y-0WGY			
					0
5	V-22301	BORL14*2//BECARD/QUAIU #1	3702.5	0	0
5	V-22301		3702.5	0	0
5	V-22301	BORL14*2//BECARD/QUAIU #1	3702.5	0	0
5	V-22301 V-21504	BORL14*2//BECARD/QUAIU #1 CMSS12B00634T-099TOPY-099M-099NJ-	3702.5 3577.778	0 30MS	0
		BORL14*2//BECARD/QUAIU #1 CMSS12B00634T-099TOPY-099M-099NJ- 099NJ-17Y-0WGY		-	-
		BORL14*2//BECARD/QUAIU #1 CMSS12B00634T-099TOPY-099M-099NJ- 099NJ-17Y-0WGY KFA/2*KACHU//BECARD/MUNAL #1		-	-
6		BORL14*2//BECARD/QUAIU #1 CMSS12B00634T-099TOPY-099M-099NJ- 099NJ-17Y-0WGY KFA/2*KACHU//BECARD/MUNAL #1 CMSS13Y00084S-099Y-099M-099NJ-099NJ-		-	-
6	V-21504	BORL14*2//BECARD/QUAIU #1 CMSS12B00634T-099TOPY-099M-099NJ- 099NJ-17Y-0WGY KFA/2*KACHU//BECARD/MUNAL #1 CMSS13Y00084S-099Y-099M-099NJ-099NJ- 11Y-0WGY SOKOLL/3/PASTOR//HXL7573/2*BAU/4/ WBLL4//OAX93.24.35/WBLL1/5/MUTUS*2/	3577.778	30MS	0
	V-21504	BORL14*2//BECARD/QUAIU #1 CMSS12B00634T-099TOPY-099M-099NJ- 099NJ-17Y-0WGY KFA/2*KACHU//BECARD/MUNAL #1 CMSS13Y00084S-099Y-099M-099NJ-099NJ- 11Y-0WGY SOKOLL/3/PASTOR//HXL7573/2*BAU/4/	3577.778	30MS	0
6	V-21504	BORL14*2//BECARD/QUAIU #1 CMSS12B00634T-099TOPY-099M-099NJ- 099NJ-17Y-0WGY KFA/2*KACHU//BECARD/MUNAL #1 CMSS13Y00084S-099Y-099M-099NJ-099NJ- 11Y-0WGY SOKOLL/3/PASTOR//HXL7573/2*BAU/4/ WBLL4//OAX93.24.35/WBLL1/5/MUTUS*2/	3577.778	30MS	0

Chee	eks	Arooj-22	3433.5		
		Akbar-19	3357.9		
LSD	(0.05) = 39	0.68, CV (%) = 12.46			
B-IV	7				
1	V-21589	CHAKWAL-50/3/ATTILA*2/PBW65*2//TNMU PB14DR0010824-0A-0A-0A-7A-0A	4718.5	10M	0
2	V-21577	MUTUS*2/HARIL #1*2/3/SWSR22T. B/2* BLOUK #1//WBLL1*2/KURUKU CMSS14B01582T-099TOPY-099M-0SY-55M- 0WGY	4691.4	30MS	10M
3	V-21517	KENYA SUNBIRD/2*KACHU//KFA/2*KACHU CMSS13B00499S-099M-099NJ-099NJ-25Y- 0WGY	4648.2	0	0
4	V-21580	CASCBL/BAVIS//2*BORL14 CMSS14B01613T-099TOPY-099M-0SY-12M- 0WGY	4611.1	10M	10MR
Chee	cks	Arooj-22	4112.4		
		Akbar-19	3254.3		
LSD	(0.05) = 39	8.05, CV (%) = 12.04			
B-V					
1	V-21635	QG4.37A/4/MILAN/KAUZ//PRINIA/3/BAV92 /5/MILAN/KAUZ//PRINIA/3/BAV92/6/SKAUZ *2/PRL/CM6553//INQ-91 PB14DR001152-0A-0A-0A-1A-0A	4563.6	10M	60M
2	V-22644	KACHU#1//WBLL1*2/KUKUNA/3/BRBT1*2/ KIRITATI/6/ROLF07*2/5/REH/HARE//2*BCN /3/CROC_1/AE.SQUARROSA (213) //PGO/4/ HUITES/7/BORL14 CMSS12B01029T-099TOPY-099M-099NJ- 099NJ-20Y-0WGY	4235.8	10M	20M
3	V-22647	MUTUS*2//TAM200/TURACO/3/KFA/2* KACHU/4/MUNAL*2/WESTONIA CMSS14Y01703T-099TOPM-099Y-099M- 099NJ-099NJ-11Y-0WGY	4200.0	10M	0
Chee	cks	Arooj-22	4188.9		
		Akbar-19	3409.9		
LSD	(0.05) = 354	4.28, CV (%) = 10.73			

(e)-Short Regular Wheat Yield Trial

During this year, five late regular wheat yield trials were conducted in which 280 advanced lines were verified by means of alpha lattice design with two replications by using two checks (Akbar-19 and Arooj-22) of bread wheat. The tardily sowing was done on 6th December 2022. Data regarding days to plant height, disease reactions, yield, days to heading and maturity were documented. Selections of fortunate lines on the basis of yield, disease score and visual grain basis

were made (table 17). Among 280, 40 advanced lines were selected for further evaluation in provincial uniform wheat yield trials. Among these selected advance lines, following lines surpass the best checks in late sown condition depicted that these lines perform better in heat stress scenario.

B-1 (Short)			
V. Code	Yield	% Increase	Over Checks
	(kgha ⁻¹)	Akbar-19	Arooj-22
		3120	3778
V-21209	4764	52.7	26.1
V-21207	4449	42.6	17.8
V-21039	4441	42.3	17.5
V-21183	4406	41.2	16.6
V-21050	4386	40.6	16.1
V-21034	4264	36.7	12.9
V-21214	4144	32.8	9.7
V-21205	3972	27.3	5.1
V-21203	3962	27.0	4.9
21049	3870	24.0	2.4
B-II (Short	;)		
		2994	3512
V-22232	4840	61.6	37.8
V-22265	4394	46.8	25.1
V-22240	4144	38.4	18.0
V-22254	4001	33.6	13.9
V-21225	3960	32.3	12.7
V-22230	3874	29.4	10.3
V-22236	3818	27.5	8.7
V-22248	3789	26.6	7.9
V-22262	3521	17.6	0.2
B-III (Shor	·t)		
		3173	3694
V-22301	4691	47.9	27.0
V-22294	4519	42.4	22.3
V-22303	3973	25.2	7.6
V-21504	3946	24.4	6.8
V-22302	3889	22.6	5.3
V-22320	3864	21.8	4.6
V-21503	3785	19.3	2.5
V-22287	3769	18.8	2.0
V-22296	3704	16.7	0.3

 Table 17: Yield performance advanced lines in short regular yield trial (2022-23)

 B-1 (Short)

B-IV (Shor	t)		
		3623	4263
V-21526	4342	19.8	1.9
B-V (Short))		
		2718	3117
V-22647	4015	48	28.8
V-22665	3912	44	25.5
V-22643	3751	38	20.3
V-22663	3573	31	14.6
V-20671	3325	22	6.7
V-21665	3285	21	5.4
V-20550	3125	15	0.3
CV (%) = 11.4	45, LSD (0.05) = 295.64	

(d)-Regular Yield Trial (SABWGPYT)

Fifty advanced lines of bread wheat, selected from South Asia Bread Wheat Genomic Prediction Yield Trials 2021-22 were tested in regular yield trials (B-Trial) under normal planting irrigated conditions. Data for emergence (%), days to 50% heading, Normalized Difference Vegetation Index (NDVI), canopy temperature, plant height (cm), lodging (%), diseases incidence and grain yield (kgha⁻¹) were recorded. Five advanced lines have been selected which performed better than check varieties (Akbar-19) for grain yield (594 kgha⁻¹) and exhibited good disease tolerance. Among selected advance lines, V-22429 gave highest grain yield of 6308 kgh⁻¹a followed by V-22424 (6292 kgha⁻¹), V-22444 (6248 kgha⁻¹), 22408 (6235 kgha⁻¹) and V-22421 (6185 kgha⁻¹), respectively.

(e)-Punjab Uniform Wheat Yield Trials (PUWYT)

This trial is coordinated by Chief Scientist, Wheat Research Institute, AARI, Faisalabad. Advance lines are contributed by public sector and private sector stakeholders conducting research on wheat improvement (table 17). This year, fifty-eight advance lines were evaluated against check varieties Akbar-19 and Arooj-22, using alpha lattice experimental design with two replications. The trials were planted on normal planting in November 2022, at 30 locations throughout Punjab province under irrigated and rainfed conditions. The highest average grain yield was produced by NR-587 (4511 kg ha⁻¹) followed by V-21239 (4447 kg ha⁻¹) and NIBGE 10HP-435 (4393 kg ha⁻¹), while check varieties Arooj-22 and Akbar-19 produced 4387 kg ha⁻¹ and 4311 kg ha⁻¹, respectively (table 18).

Table 18: PUWYT 2022-23 (grain yield:kg/hac)

	· · · · ·																	•				· .										
Rental	Rider Name	CANENAL PROPERTY.	VENAN	-	DAK	MANE,	AND A	Rendalik	Person	-	M.R. DN	Call Referen		lagada	-	wa,	MOLAUR	-	87.048	-	AURIA			ACR, BEAKGAR	NAME OF T	Caluada da		Allock	NACIN	NOTE:		Sund Average
				waa.	PATTAN	SAMING.	DENATUR	-	-	**	DIN	Reinen	-	-	10,04	RD, (M)					~~~			BRACOM			CHARMAL			1000	~	Part 4
-	NR-587	4500	\$298	5013	3271	5138	4992	179.8	-	3453	4288	3925	2725	4742	Shee	3500	4483	6460	6567	4833	\$125	\$754	5067	45.50	4883	4517	436.4	2540	4097	3500	5733	4511
	V-21239	5300	\$297	498.8	2625	4517	5465	2979	_	_	1411	1742	3271	4171	5571	3670	2942	6025	5950	4417	\$292	5050	5300	4800	4034	4334	5363	1957	5077	3264	5520	4467
	NINGE 12HP-435	4813	5343	4063	2817	\$171	4950	3454	2304	4008	\$175	3775	2613	2583	5935	3550	5888	5917	5950	2825	5125	\$267	\$717	\$292	4867	4767	3689	1987	4831	3035	5013	4393
	AROQI-22 (Check)	4908	4865	4908	3350	5000	5209	2333	2500	3520	4390	3588	3067	3679	5160	3415	4300	5714	5425	3000	6525	5092	6333	5025	4500	4617	508.8	2464	5189	2889	5520	4387
5	15-20342	5304	4812	4829	3483	4800	\$550	4831	3863	1718	4483	4092	2258	3204	4547	3931	\$375	6675	4550	3250	4500	5942	\$717	4834	4794	4583	3856	2134	3909	3049	4213	4381
	A5-8108	5300	\$225	4088	4290	4904	5075	4192	2800	3908	3804	ž	3521	3904	4035	ŧ	\$200	6333	3242	4750	4792	8	558	4584	4250	4875	464	3434	<u>5</u>	3009	4747	4358
	V-21248	\$225	5423	4933	3758	458.8	4725	3888	3054	3633	3971	3696	3308	3308	\$246	3458	3383	6126	5475	4417	5025	5450	6008	4984	4725	4442	3920	2804	4540	2875	4520	4334
	TRW-20	5675	5070	4196	3054	4613	\$300	3342			3092	3558	3871	3813	4870	3700	3767	4517	6825	4250	4708		6633	5084	4067	4400	5500	1917	4907	2965	4773	4330
	NR-583	4725	4477	4908	3255	4929	4833	4400	3342	3588	3321	3383	2596	4168	\$244	2821	3492	\$875	\$250	3583	6875	4783	6067	4667	4825	405	4894	3014	4939	3083	4800	4311
-	AKBAR-19 (Check)	5300 4557	5240	4646	2938	4092	5813	3675	2010	3542	3467	3621	2875	2983	5085	2826	3942	5817 5817	8458	4817	4208	4733 5258	5008	4834 4584	4717	4404	3004	2290	3861 4819	3882 3250	3738 4827	4311 4297
	KS-8351 NW-150	4307	3000	4058	4004	4721 4771	5100	3421	2746	3942	4292	10.0	1758	2700	5281	3771	3942	6542	5425	4007	6075	5825	4508	4575	4567	4517	5991 3518	1897	3811	3132	4507	4296
	204164	4458	5075	4196	2522	5060	5658	4171	_	2006	2683	4158	2525	4963	5525	2387	4483	6126	5600	4500	\$175	5450	4942	4417	4450	4025	3278	1844	4258	2944	2347	4295
	V-21448	4721	5093	4563	3317	458.8	\$279	3729	3446	3450	4383	3533	3579	2483	4540	2558	5858	6126	5950	3250	5417	5450	4758	4417	4400	4258	4012	2107	\$547	3250	2892	4283
	TW1992	4904	4072	5083	2158	4429	\$125	3800	2758	3283	4113	3696	3526	4471	3981	3889	5375	5920	5892	2583	2958	\$267	5325	5117	4067	4433	4771	2807	4843	3009	5453	4277
	V-20613	5525	5483	4604	3825	4979	4979	4171	3621	3500	3154	4113	3271	3525	5688	2041	4392	5675	5458	2750	\$500	5050	4642	5084	4650	4367	3411	2607	3916	3825	4387	4236
	NR-SE2	5525	5500	4292	2917	4592	4967	3975		_	4363	4042	2806	4453		2910	4483	6401	3675		6292	\$700	\$\$17	4834	4517	4635	2583	1980	4443	3451	3733	4233
18	TARA-8301	4863	\$962	4692	2083	4571	5804	3875	2713	2208	4538	3113	3863	4308	5044	2164	3942	5851	5608	4417	4634	\$208	5058	\$250	4984	8	3611	2567	3584	3014	4533	4233
19	85-21151	5054	\$555	4633	2471	4750	5025	4163	3038	3850	\$229	3333	4013	4171	4565	3315	3583	6467	4292	5583	3408	\$750	5958	4500	4634	4817	3873	2579	3542	3465	4653	4329
20		4883	4870	5200 4529	3038	4603	4975	3838	2204	3921	2745	3721	2588	3183	\$140 \$178	2859	3208	4550	5092	5567	5205	4042	5417	\$250 4517	4634	4542	3572 4149	2150	4295	3090	6013 4947	4309
21	AS-1409 WV-1340	5000	4585	4400	2000	4704	4992	3017	2138	2246	2654	3842	3404	1042	4796	2002	3523	5508	5775	4250	6075	4900	5890	4782	4450	4600	1064	2038	4979	3022	4540	4203
22	W-10611	4546	4092	4433	2921	4004	5000	2232	3771	2713	2225	2500	2779	3375	5576	3767	5017	5989	5775	2583	4542	5823	5288	5000	4600	4407	4460	2124	4540	2708	5080	4195
24		4513	5345	40.0.0	2138	4083	5195	3800	2621	2854	2250	3663	2279	2546	4881	3719	5275	5871	5075	3500	4167	4775	5892	4217	4817	4442	4580	2748	4082	3785	4492	4183
25		5171	4922	4813	2679	4525	401	3442	2018	3096	3821	3704	3642	2908	4584	3113	2942	5851	5600	3917	6125	\$208	6008	46.23	4350	4300	2914	3839	4643	3438	5520	4175
26	25(244	4858	4462	4647	3183	4063	4617	3700	2228	2904	3433	4013	2908	3650	4905	3174	4300	5783	3325	5833	4914	5142	5025	4917	4917	4167	4296	2347	4858	3068	4160	4172
27	SW-215006	4825	4017	4046	2625	4625	\$300	3363	3388	3304	3683	3640	2258	3904	4888	2705	4483	5850	5075	4000	6875	\$208	5175	4750	4834	4635	4342	1800	3459	3139	41.87	4158
	21(252	4450	-	4771	3553	4096	4093	4839	3588	\$271	3345	ž	3646	4121	4640	쁥	3825	\$900	4208	3833	5083	4717	5175	5417	4867	4584	3422	1590	44 53	2979	4053	4167
	PGMB-20-7	5038	4407	4063	2554	3892	4317	3842	_	_	2775	2996	3117	3053	3957	3211	3942	5655	5600	3942	5625	5025	7033	5417	4867	4617	3764	2133	5077	3104	4533	4150
	6-20121	4092	4102	\$129	2563	4367	4621	2979	3108		3829	3529	2863	3079	3934	3116	4658	5508	5850	4333	\$767	4900	5417	4800	4725	4334	3342	2877	4881	2861	4573	4147
	V-21668 V-21433	4729	_	4067		3783		4096	3025	3371	3713	3404	2979		4972				5250	5333	3417	4513			4367	_	3961	2214	4933	2896	5653	4145
	A29-22	1020	5423	4046	3117	3708	4400	3738	2592	4508	3729	3738	3046	3942	4755	3613	3962	\$100	5425		5067	-	5717	4642	4067	4292	4753	1747	4651	2396	4027	4185
	NINGE 11HP-407	5821	4898	4533	2829	4271	4958	1742	-	3611	1825	1242	3063	2763	4533	3770	4725	5508	5600	3758	6792	4900	5358	4358	4517	4817	2588	2140	4547	3236	3080	4122
	NR-584	4018	5158	4433	2350	4404	4754	2508	_	8221	3325	4175	3117	4339	5081	2888	5375	5642	5458		2582	5017	4825	4500	4588	4275	2751	2540	4585	3215	4560	4121
	JPL-21	4654	542.8	4454	2068	4333	4844	4363	3429	4113	2804	3638	3204	3563	4039	2756	3942	\$100	4375	4367	6625	4523	5858	4667	4634	4558	3390	2144	3291	2604	4427	4113
37	EV-20505	5396	4460	5025	2133	4179	\$300	3238	2525	2567	3025	3508	2946	3754	4391	4134	3 500	5783	4550	4250	\$502	5142	5117	4550	4417	4100	3963	2117	4663	3236	\$240	4150
	V-20096	4908	411	4995	2833	4175	4896	4025	_	2776	2646	3208	3408	3038	5055	3264	3458	\$783	\$250	5435	3708	\$142	5425	4833	444	4542	3144	2004	2795	2833	\$507	4107
	V-21265	5121	4843	4513	3029	4746	4858	3654	2379	3068	2745	3363	3483	4729	4974	3039	2858	5508	5075	2992	3567	4900	\$558	46-45	4850	4794	4507	2500	3937	2694	4587	4098
	V-25448	4754	3867	5821	2925	4517	4902	4046	3621	3798	3354	2829	3704	4483	4083	3783	3342	4617	6475	2750	\$167	4108	4583	4750	4808	4500	2009	3450	4503	3139	3667	4052
	PGMB-20-67 V-21254	5033	4033	4750	2950	3625	5425	3633	3133	2550	3525 3321	3304	2002	1571	4231	3315	3 533	5025	3508	2875	5067	405	4875	4917 4417	4004	4600	4053	2134	4881 2801	2507	3920	4008
40		4940	4000	4042	2150	4767	4367	2300	2583	2004	2421	12154	2003	4390	4141	2947	3967	5783	3950	3083	5625	5142	6683	4417	4634	4000	3142	2007	2401	22966	4298	2985
44		5500	4945	2962	2838	4003	4738	2908	2467	2671	2700	3042	3963	2408	4417	1809	3583	5508	5608	3250	5583	4900	5067	4567	4450	4817	3892	2097	3778	2340	4400	2975
45		4483	4480	4000	2988	4217	4933	3811	_	3025	2354	3338	2954	2738	4081	3340	3175	4958	2233	4250	5882	4417	5600	4475	4067	4167	3680	2347	4827	2951	4493	2953
		3688	4097	4246	1821	3925	3875	3417	2500	3542	4142	3138	3292	4617	4790	2659	3583	\$875	\$250	4083	\$125	4783	5517	4500	4583	4638	335.8	2004	3769	3028	4720	3947
-07	2087005	4584	4018	403	2958	3363	4228	3625	2467	2308	3154	3183	2746	3183	3904	3183	\$200	4547	4900	2958	6542	4050	6725	4584	4817	4500	3222	2490	3291	3076	4773	3982
-48		3958	4467	4113	1995	4046	4679	3354	2938	3338	3054	3421	3208	2875	4944	3985	4525	\$508	5083	3583	5708	4900	5008	4550	4450	4275	3396	2070	2855	3188	5027	3890
-		5038	5188	406	3388	4367	4108	4296	2829	3054	2150	3475	3588	2095	4740	2595	3425	6125	4200	4000	4792	5450	6592	4584	4584	4288	1544	2118	1747	2729	4893	3885
	10213465	3758	4052	4383	2717	2968	\$259	3813	3292	3342	3004	3567	2396	3063	4544	2821	3350	5096	3908	4367	4483	4533	\$700	4500	4817	4942	2493	2480	2385	3464	5027	3881
	SFAG-21	4463	am	4525	2638	3617	4929	3250	2002	2898	2268	2729	408.8	3225	4362		4525	6195	3508	2792	5583	5517	6717	4750	4417	4058	1833	2267	1489	3313	5350	3857
	6FAG-21 3FAG-21	5479	4015	4258 4917	2850	4750	5150	3400	3108	3538	1983	3421	2771	3182	4009	2839	2975	5100	5458	3583	6075	4533	4458	4625	4584	4017	1582	2247	1540	2799	4147	3815
	29-W0-21 PGMB-20-89	3800	296.0	4004	2788	3483	3629	2025		2483	2542	2729	2796	8121	174		2942	5096	\$275		5042	4533	4725	4718	4550	4009	5822	2440	4573	2813	3267	3780
	KIZIHIA	4308	4042	5246	2882	3813	4858	4004	-	_	2400	2008	1718	2475	4077	2839	3275	4914	5975	3083	5063	4408	5542	5000	4650	4817	1658	2027	1291	3021	5807	2764
56		3479	3862	2942	2971	2171	3290	3125	2296	4050	2429	2488	3179	2900	3022	2840	\$200	4075	\$288	3417	4417	2983	6067	4500	4417	4417	3998	2390	4976	2618	51.78	2675
	K121HBC	4538	4471	4242	2621	3883	5183	4046	2167	2292	1700	2471	2367	3000	5101	3132	3583	4753	3525	3063	5917	4233	5000	4500	4525	4235	1050	2247	1306	3403	4413	2589
58	RCA KHAZANA	3729	3483	3439	22157	4150	4638	2322	2392	2854	1018	2817	2675	22271	3830	1654	3767	4275	5067	3417	\$250	3800	\$775	4534	4500	4084	2000	2217	1813	2889	4007	2554
	1025428	3775	3960	4383	2946	4088	4185	3763	3125	2509	1933	3038	3108	2075	3833	2965	3942	4275	3517	2750	\$875	3800	6367	4450	4267	4309	1367	1868	869	2951	\$200	3505
60	K121H5E	2983	2148	3413	2171	3658	3783	3558	2496	2079	1979	2725	2367	2600	3799	3595	3317	2990	\$250	2625	5875	3550	4975	4500	4092	4817	1544	2550	904	2910	4080	2340
_																																

National Uniform Wheat Yield Trials (NUWYT 2022-23)

This trial comprised eighty entries (77 advance lines, 03 Check varieties; Akbar-19, Arooj-22 and one local check) and was coordinated by National Wheat Coordinator, Islamabad. Wheat Research Institute, Faisalabad contributed eight advance lines in this trial. Trials were conducted on 23 locations under irrigated and six locations under rainfed conditions in Punjab. The performance of the candidate lines (contributed by WRI) better than check varieties under irrigated and rainfed conditions is given in table 19 and table 20, respectively.

Sr. No.	V-Code	NUWYT Year Testing	Average Grain Yield	In	esistance dex RI)	% Inc	rease over Variety	over Check riety		
			(kg ha ⁻¹)	Leaf Rust	Yellow Rust	Arooj- 22	Akbar- 19	Local Check		
1	V-19347	2^{nd}	4649	8.17	7.27	4.68	5.44	4.45		
2	V-19559	1 st	4635	8.04	3.42	4.37	5.13	4.13		
3	HYT-100-74	2^{nd}	4616	7.73	6.01	3.94	4.69	3.71		
4	V-19308	2^{nd}	4586	5.60	6.74	3.27	4.01	3.03		
5	V-20337	1 st	4542	7.58	9.00	2.27	3.02	2.04		
6	HYT-100-76	2^{nd}	4472	7.69	4.69	0.70	1.43	0.47		
Aroo	j-22(Check)		4441							
Akb	ar-19(Check)		4409							
Loca	l Check		4451							

 Table 19: The performance of the promising candidate lines (contributed by WRI) under irrigated conditions (23 locations) in Punjab.

Table 20: The performance of the promising candidate lines (contributed by WRI)
under rainfed conditions (6 locations) in Punjab.

Sr. No.	V-Code	NUWYT Year Testing	Average Grain Yield	In	esistance dex RI)	% Inc	rease over Variety	Check
			(kg ha ⁻¹)	Leaf Rust	Yellow Rust	Arooj- 22	Akbar- 19	Local Check
1	V-19347	2^{nd}	4164	8.17	7.27	12.06	13.96	15.19
2	V-19308	2^{nd}	3999	5.60	6.74	7.62	9.44	10.62
3	V-20337	1 st	3973	7.58	9.00	6.92	8.73	9.90
4	V-19532	1 st	3932	4.72	5.48	5.81	7.61	8.77
5	HYT-100-74	2^{nd}	3847	7.73	6.01	3.53	5.28	6.42
6	HYT-100-76	2^{nd}	3762	7.69	4.69	1.24	2.96	4.07
Aroo	j-22(Check)		3716					
Akba	ar-19(Check)		3654					
Loca	l Check		3615					

WHEAT AGRONOMY

(a)-Effect of climate change on sowing time of wheat crop

The trial was conducted to find out the best sowing time for newly developed wheat lines under changing climate scenario. Ten newly developed wheat lines viz. V-19347, HYT-100-74, V-19308, HYT-100-76, HYT-100-47, V-20337, V-19532, V-20330, V-19559 and V-19317 along with four check varieties i.e. Akbar-19, Subhani-21, Dilkash-21 and Arooj-22 were planted seven times starting from 20th October 20th December with ten days interval. Maximum grain yield of 6677 kg ha⁻¹ was recorded when crop was sown on 20th October on overall mean basis, followed by 1st November sown grain yield (6342 kg ha⁻¹) and 10th November sown grain yield (6115 kg ha⁻¹). Among the varieties/lines It was found that V-19308, produced maximum grain yield (6217 kg ha⁻¹) amongst all varieties, which was followed by HYT-100-47 (6050 kg ha⁻¹) and HYT-100-76 (5953 kg ha⁻¹), respectively (table 21).

Advanced lines/	20 th	1 st	10 th	20 th	30 th	10 th	20 th	Means
varieties	Oct.	Nov.	Nov.	Nov.	Nov.	Dec.	Dec.	
Akbar-19	5608	5484	5485	5787	5332	4281	4216	5171f
Subhani	6279	5918	5212	3991	3440	3360	3061	4466h
Dilkash	6367	5844	6177	5153	4286	3912	3889	5090f
Arooj-22	7263	6608	5856	5530	4760	4632	4149	5543d
V-19347	7738	7253	6170	5883	5356	4100	4438	5850bc
HYT100-74	6489	6277	5864	5218	4478	4212	4309	5264ef
V-19308	7410	6928	6667	6559	5383	5403	5169	6217a
HYT100-76	7011	6924	6422	5882	5781	5130	4519	5953bc
HYT100-47	7658	6909	6931	5858	5797	5001	4196	6050ab
V-20337	6123	6846	6395	6249	4885	4971	4620	5663cd
V-19532	5864	5787	5682	4877	4539	4405	4140	5027f
V-20330	5658	5562	5695	4891	4188	3304	3911	4763g
V-19559	6133	5948	6561	5389	4856	4607	4385	5499de
V-19317	7881	6500	6486	5735	4600	4072	3869	5590d
Means	6677a	6342b	6115c	5500d	4835e	4385f	4206f	
Cd1 for sowing date	es 188, for	varieties 2	44 and for	interaction	522	•	•	•

Table 21: Effect of climate change on sowing time of wheat crop

SEED PRODUCTION

a)-Single head progenies

For maintaining the purity of the variety/seed, breeder's nucleus seed, single head progenies of each variety were planted every year. For this purpose single head rows of ten commercial wheat varieties, one Durum wheat, twenty advanced lines of NUWYT and PUWYT were planted in the 3rd week of November. The number of head rows varied from 20 to 200 per variety/line, head rows of each variety were observed at different stages of plant development and rows deviating from the original variety were discarded. Uniform, vigorous and disease resistant rows of each variety were harvested and threshed separately. The seed of head row was also observed for grain characteristics. Selected entries were planted as breeder's seed to produce the pre-basic seed of commercial wheat varieties whereas the seed of head rows of candidate lines was kept separately for further study. The detail of selected heads is given in table 22 and 23

Sr. No.	Name of Variety	Single head selected	Sr. No.	Name of Variety	Single head selected
	v				
1	Faisalabad.08	50	11	HYT-70-16	200
2	Punjab.11	50	12	V-17086	100
3	Galaxy.2013	50	13	HYT-100-47	100
4	Ujalla.16	50	14	HYT-100-74	100
5	Anaj.2017	100	15	HYT-100-76	100
6	Akbar-19	250	16	V-19347	100
7	Dilkash-20	250	17	V-19317	50
8	Subhani-21	100	18	V-19308	50
9	MH-21	50	19	V-18352	50
10	Arooj-22	250			

 Table 22: Detail of single heads selected (2022-23)

Sr. No.	Name of Variety	Accepted Progenies	Rejected Progenies
1	Faisalabad.08	5	0
2	Galaxy.2013	5	0
3	Ujalla.16	5	0
4	Anaj.2017	5	0
5	Akber-19	47	3
6	Dilkash-20	48	2
7	Subhani-21	45	5
8	MH-21	10	0
9	Arooj-22	48	2
10	HYT-70-16	4	20
11	V-19308	4	6
12	V-19347	8	2
13	HYT-100-47	10	0
14	HYT-100-74	7	3
15	HYT-100-76	9	1
16	V-19317	9	1

Table 23: Detail of selected single heads progenies

(b)-Pre-basic and basic seed production

Pure and true to type seed of a variety plays an important role in crop productivity. For maintaining the seed purity of commercial varieties and candidate lines, breeder's seed is produced from heads. From breeder's seed, pre-basic seed is produced every year, most of seed is being supplied to the Punjab Seed Corporation and other registered private seed companies. Four commercial varieties of bread wheat and one durum wheat was planted at low seed rate with self-propelled seed drill to produce the Pre-Basic seed. The crop was kept under observation from tillering to maturity stages and deviating entries were discarded. As per instructions, the crop was inspected twice by the Deputy Director, FSC & RD to check the quality standards of pre-basic seed and crop purity. Besides producing the pre basic seed, some quantity of basic seed of commercial varieties was also produced. The detail of pre-basic and basic seed production during 2022-23 is given in table 24.

1	Table 24: Pre basic and basic seed produced (2022-23)										
Sr.	No.	Varieties	Pre-Basic seed (Kg)	Basic (Kg)							
1	•	Arooj-22	11600	4900							
2		Subhani-21	1600	1600							
3		Dilkash-20	4500	1600							
4	•	Akbar-19	5150	1750							
5		Durum-21	600	0							

T 11 **A** 4 **D** 1 (2022 22)

c)-Seed production of barley varieties.

Following quantity of seed of different barley varieties was produced given in the table 25.

Sr. No.	Varieties/lines	Quantity seed kg
1	Talbina-21	200
2	Jau-21	200
3	Pearl-21	200
4	Jau-17	200
5	Sultan-17	200

Table 25: Quantity of barley seed produced (2022-23)

(d)-Hybrid seed program

Cytoplasmic Male Sterile (A) lines, maintainer line (B) and fertility restorer lines are the main components of hybrid seed production. Thirty-three A-lines (CMS lines) along with the same number of B-lines (maintainers) were planted in the field. Thirty-three CMS lines were maintained by crossing with their respective maintainer (B-lines). Sixteen fertility restorers were also maintained by selling.

WHEAT ENTOMOLOGY

(a)-Effect of different climatic factors on wheat aphid population

The experimental trial was conducted at the research area of wheat Research Institute, Faisalabad during 2022-23. Three Moericke Yellow water tray traps were installed at 60m apart from each other in three different fields of wheat crop at the height of 75cm from the ground level. Daily alate aphid population was recorded from these yellow water tray traps and later on data was transformed into weekly basis. The weekly counts of trapped alate aphids were correlated with a-biotic factors. The results are given in the tabulated form (table 26).

Months / Year	Temper	-	_	idity	Rain	Av. Aphid
	(C	⁰)	(%)		fall/	population.
			0	-	week	/Trap/week
	Max C ⁰	Min C ⁰	8 am	5 pm	(mm)	
January, 2023						
1 st week	15.89	4.2	91.0	68.28	0	5.6
2 nd week	17.5	5.2	85.5	51.87	0	7.96
3 rd Month week	19.63	5.07	78.5	44.5	0	10.93
4 th week	20.31	4.71	84.37	52.5	30.6	15.27
February,2023						
1 st week	21.86	8.36	79.43	41.0	0	45.31
2 nd week	23.25	8.96	66.43	36.86	0	133.28
3 rd week	27.86	11.9	82.0	48.43	0	444.86
4 th week	28.67	13.58	81.28	44.0	6.4	391.77
March,2023						· · · · · · · · · · · · · · · · · · ·
1 st week	22.48	14.5	83.14	53.57	0	717.25
2 nd week	28.02	14.0	80.83	49.62	0	1382.39
3 rd week	24.34	15.94	81.62	63.5	15.8	414.29
4 th week	26.12	14.94	84.37	59.25	39.4	65.4
April,2023	1					<u> </u>
1 st week	58	15.78	73.0	53.86	37.4	11.98

Table 26: Average wheat aphid population/ trap/week

(b)-Correlation of wheat aphid with climatic factors

Data showed that aphid population was started trapping on yellow water tray traps during 1^{st} week of January, 2023 (5.6/trap/week) and then gradually increased during subsequent weeks and peek of aphid population was observed during 2^{nd} week of March (1382.39/trap/week). Aphid population was started to decrease during 1^{st} week of April-2023 (11.98/trap/week) due to rise of temperature and maturity of crop. Aphid population was maximum when maximum and minimum temperature was $28.02C^0 \& 14.0C^0$, respectively with relative humidity 80.83% &49.62% at 8am & 5pm, respectively. Aphid population showed +ve and non-significant correlation with maximum and minimum temperature. While aphid population had +ve and –ve effect & non significantly correlated with relative humidity at 8am and 5pm, respectively. Rainfall had –ve effect and non-significantly correlated with aphid population (table 27).

Aphid Population	Max C ⁰	Min C ⁰	R.H (%) 8.0 am	R.H (%) 5.0 pm	Rainfall (mm)
	0.0396	0.5133	0.0264	-0.0473	-0.3173
P Value	0.8977	0.0728	0.9318	0.8781	0.2908

 Table 27: Correlation of wheat aphid with climatic factors

(c)-Varietal screening of wheat varieties/ advance lines against aphid

The trial was conducted at the research area of Wheat Research Institute, Faisalabad during 2022-23. Fourteen (14) wheat varieties/Advanced Lines i.e, V1(Akbar-19), V2(Subhani-21), V3(Dilkash-21), V4(Arooj-22), V5(19347), V6(HYT-74), V7(19308), V8(HYT-76), V9(HYT-100-47), V10(20337), V11(19532), V12(20330), V13(19559), V14(19317) were screened out against aphid attack. The data of aphid population was recorded at 10 days interval during the month of February-March, 2023 from 10 randomly selected tillers of each line/ variety. The aphids were dislodged on white paper sheet with the help of camel hair brush and then counted. The results are as mentioned in table 28 in three different dates

Sr.	Varieties	15-02-23	24-02-23	08-03-23	Av. Aphid pop./tiller
1	Akbar-19	7.8	8.3	6.867	7.656 d
2	Subhani-21	5.367	7.467	5.3	6.044 e
3	Dilkash-21	4.867	4.233	4.2	4.433f
4	Arooj-22	4.8	4.533	3.6	4.311f
5	V5-19347	8.833	13.0	8.9	10.244 c
6	HYT-74	4.333	4.567	4.233	4.378 f
7	V7-19308	4.5	5.0	4.833	4.778 f
8	HYT-76	5.233	5.3	3.833	4.789 f
9	HYT-100-47	8.133	9.3	4.8	7.411 d
10	V10-20337	13.533	14.133	6.867	11.511b
11	V11-19532	15.933	13.3	8.9	12.711a
12	V12-20330	10.167	13.2	8.633	10.667 bc
13	V13-19559	9.9	13.167	9.067	10.711bc
14	V14-19317	11.4	13.4	9.5	11.433b
Lsd	value at 0.05%=1.9	991			

 Table 28: Average aphid population per tiller on different wheat

 variation / lines

The lowest aphid population was recorded on wheat varieties/lines viz, Arooj-22(4.311), HYT-74(4.378), Dilkash-21(4.433), V-19308(4.778) and HYT-76 (4.789), and these were statistically at par with each other while maximum aphid population was observed on V-19532 (12.711) followed by V-19317(11.433), V-19559 (10.711), V-19317 (11.433), V-19347 (10.244), Akbar-19 (7.656), and Subhani-21 (6.044). The above mentioned wheat varieties/lines were statistically different with each other regarding aphids population/tiller. However, all the above-mentioned varieties/lines behaved statistically different among one another (table 29, 30 and 31).

Sr.	Varieties	R1	R2	R3	Av. Aphid pop./tiller
1	Akbar-19	7.8	8.3	7.3	7.8 de
2	Subhani-21	4.3	5.6	6.2	5.367ef
3	Dilkash-21	5.2	3.1	6.3	4.867f
4	Arooj-22	4.1	5.1	5.2	4.8f
5	V5-19347	9.2	9.1	8.2	8.833cd
6	HYT-74	3.4	4.3	5.3	4.333f
7	V7-19308	4.1	3.2	6.2	4.5f
8	HYT-76	6.4	5.2	4.1	5.233ef
9	HYT-100-47	10.3	7.4	6.7	8.133d
10	V10-20337	15.1	16.2	9.3	13.533ab
11	V11-19532	14.3	16.2	17.3	15.933a
12	V12-20330	10.2	11.2	9.1	10.167cd
13	V13-19559	11.4	9.6	8.7	9.9cd
14	V14-19317	12.3	10.4	11.5	11.4bc
LSD	value at 0.05%=2.05	56			

Table 29: Average aphid population per tiller on differentwheat varieties/line (15-02-2023)

Table 30: Average aphid population per tiller on different wheat varieties/lines (24-02-2023)

Sr.	Varieties	R1	R2	R3	Av. Aphid pop. /tiller
1	Akbar-19	7.2	9.3	8.4	8.3bc
2	Subhani-21	7.1	8.2	7.1	7.467c
3	Dilkash-21	3.2	4.3	5.2	4.233d
4	Arooj-22	4.3	5.2	4.1	4.533d
5	V5-19347	12.3	12.4	14.3	13.0a
6	HYT-74	5.3	4.2	4.2	4.567d
7	V7-19308	5.4	4.3	5.3	5.0d
8	HYT-76	4.2	5.4	6.3	5.3d
9	HYT-100-47	10.4	7.9	9.6	9.3b
10	V10-20337	12.4	15.7	14.3	14.133a
11	V11-19532	12.3	13.4	14.2	13.3a
12	V12-20330	12.1	13.2	14.3	13.2a
13	V13-19559	12.2	14.2	13.1	13.167a
14	V14-19317	12.6	14.7	12.9	13.4a
Lsd v	value at 0.05%=2.05	6			

	wheat varieties/lines (08-03-2023)										
Sr.	Varieties	R1	R2	R3	Av. Aphid pop./tiller						
1	Akbar-19	8.2	6.0	6.4	6.867b						
2	Subhani-21	4.6	6.6	4.7	5.3c						
3	Dilkash-21	3.6	4.8	4.2	4.2cd						
4	Arooj-22	4.3	3.1	3.4	3.6d						
5	V5-19347	7.7	9.9	9.1	8.9a						
6	HYT-74	4.1	4.7	3.9	4.233cd						
7	V7-19308	5.9	4.7	3.9	4.833cd						
8	HYT-76	4.5	3.8	3.2	3.833cd						
9	HYT-100-47	3.9	5.8	4.7	4.8cd						
10	V10-20337	7.0	6.3	7.3	6.867b						
11	V11-19532	8.4	9.6	8.7	8.9a						
12	V12-20330	10.1	7.2	8.6	8.633a						
13	V13-19559	9.3	8.4	9.5	9.067a						
14	V14-19317	10.1	9.8	8.6	9.5a						
Lsd v	alue at 0.05%=2.05	б									

 Table 31: Average aphid population per tiller on different wheat varieties/lines (08-03-2023)

(d)-Screening of wheat germplasm against aphids

Trial was conducted in the research area of Wheat Research Institute, Faisalabad. Three hundred and seventy-five wheat varieties/ lines of crossing block 2022-23 were screened out against aphid attack. The data of aphid population was recorded at 10 days interval during the month of February-March, 2023 from 10 randomly selected tillers of each variety/ line. The aphids were dislodged on white paper sheet with the help of camel hair brush and then counted. The results are presented in the table 32.

Table 32: Average aphid population / tiller on wheat germplasm

Material	Total Entries	Average Aphid population (range) / Tiller on each variety/line (Mean values)						
CB	375	0-05	6-10	11-15	Above 16			
		154	207	13	01			

The result showed that the aphid population ranged from 3.5 to 17 aphid / tiller. Out of three hundred and seventy-five wheat varieties/ advanced lines, only 154 varieties/ lines had up to 5 aphids per tiller and they showed tolerance / resistance against aphid attack. These lines/ varieties from crossing block 2022-2023 were had the lowest aphid population per tiller than others. The above-mentioned varieties / lines were proposed for breeding program of variety development process. While the rest of the varieties / lines in crossing block 2022-2023 had more aphids per tiller and they were not recommended for using in crossing program.

(e)-Survey of Aphid Population on wheat Crop in Different Ecological Zones of the Punjab

The survey was conducted in different climatic zones of the Punjab (Nankana, Sheikhupura, Lahore, Kasur and Faisalabad) to record aphid infestation on seven different wheat varieties i.e., Faisalabad-08, Ujala-16, Anaj-17, Akbar-19, Dilkash-21, Subhani-21 and MH-21). Aphid infestation was recorded on an average from 10 spots in each district on 28-02-2023, 02-03-2023, 20-03-2023, 22-03-2023 and 30-03-2023 Aphid population was recorded per tiller basis by selecting 10 tillers randomly from each variety/ line on each spot. The aphids were dislodged on white paper sheet with the help of camel hair brush and then counted (table 33).

	zones (districts) of the Funjab									
District	Date	Fsd -08	Ujala -16	Anaj -17	Akbar- 19	Dilkash -21	Subhani -21	MH -21	Av.pop/ Tiller	
Nankana	28/2/23	8.7	7.2	9.8	9.2	7.3	9.4	9.6	8.74	
Sheikhupura	02/3/23	9.6	11.3	12.1	7.9	10.1	8.9	8.9	9.83	
Lahore	20/3/23	10.7	9.4	12.2	9.0	9.1	9.9	8.8	9.87	
Kasur	22/3/23	8.7	10.1	7.9	8.9	11.4	7.9	8.9	9.11	
Faisalabad	30/3/23	9.9	7.8	8.8	7.7	10.3	11.5	10.6	9.51	
Average pop./ti	ller	9.41	8.88	9.88	8.67	9.64	9.52	9.36	-	

 Table 33: Average aphid population on different wheat varieties in different ecological zones (districts) of the Punjab

Survey revealed that aphid population on different wheat varieties ranged from 8.7-10.7, 7.2-11.3, 7.9-12.2, 7.7-9.2, 7.3-11.4, 7.9-11.5 and 8.8-10.6 aphids/tiller on Faisalabad-08, Ujala-16, Anaj-17, Akbar-19, Dilkash-21, Subhani-21 and MH-21, respectively. Aphid population was recorded more on Anaj-17 in Lahore and Sheikhupura districts and low on Ujala-16 and Dilkash-21 in Nankana, respectively. However, on the whole wheat aphid population remained below economic threshold level (25-30 aphids tiller⁻¹) throughout the crop season in the Punjab.

WHEAT PATHOLOGY

(a)-Diseases/rusts surveillance (monitoring of newly emerging diseases)

Comprehensive survey was conducted to monitor the rust attack on wheat varieties as well as to monitor the newly emerging diseases of wheat in different district of Punjab, Pakistan. During the cropping season, 2022-23, one hundred and fifty locations were surveyed, out of which leaf rust was observed on 36 locations in Central and Southern Punjab with low intensity specifically on old varieties like Galaxy-13, while yellow rust was observed on 13 locations with low intensity (up to 30%). However, during crop season 2022- 23, the stripe rust attack was less as compare to the leaf rust attack at all the surveyed locations. The survey results indicate that all the surveyed fields were free from newly emerging diseases like wheat blast and stem rust diseases; however, spot blotch was observed at few locations on almost all the prevailing varieties.

(b)-Disease trap nurseries (monitoring of rust virulence pattern)

To monitor the virulence pattern of rust resistant genes as well as for the observation of leaf, stripe and stem rusts symptoms on foliar part of plant, the trap nurseries were planted at eight different locations i.e. Faisalabad, Bahawalpur, Khanewal, Kala Shah Kaku, Kot Naina, Islamabad, Pirsabak and Peshawar. The data indicated that the leaf rust was trapped on 03-12-2022 on Morocco, while stripe rust was trapped during the 1st week of February, 2023 in 1st disease trap nursery rust planted at research area of WRI, Faisalabad. The isogenic lines which were resistant to leaf, yellow and stem rusts are given in table 34.

Tuble e it isogeme mies sho i eu resistant response to teur una stripe rustst			
Isogenic lines for LR	The isogenic lines having leaf rust resistance genes i.e. Lr9, Lr10, Lr 11, Lr17, Lr25, Lr 28 and Lr31 showed resistant response.		
Isogenic lines for YR	The isogenic lines having stripe rust resistance genes i.e. Yr-5, Yr-10, Yr-15, Yr18, Yr27, Yr31, Yr32 and Yr-SP were showed resistant response.		
Isogenic lines for SR	None of the tested entries showed the symptoms of stem rust		

Table 34: Isogenic lines showed resistant response to leaf and stripe rusts.

(c)- Disease screening nursery

During the 2022-23 cropping season, eight hundred ninety one (870) genotypes including entries under NUWYT, PUWYT, A Trails, B Trails and commercial varieties, were screened against both leaf and stripe rust diseases. The nursery was planted at Bahawalpur, Khanewal, Faisalabad, Kala Shah Kaku, Kot Nina, Islamabad, Pirsabak and Peshawar for evaluation against both leaf and stripe rusts. At each location, the tested entries including susceptible check variety (Morocco) were sown in single row of two meters length. At Faisalabad and Bahawalpur material was tested under rust inoculation conditions whereas at other locations screening was conducted under natural conditions. The result regarding rust response at adult plant stage indicates that among tested 870 entries, 238 entries showed susceptible response to leaf rust and 212 entries showed susceptible response to stripe rust (Annexure-I). However, remaining all entries including PUWYT & NUWYT entries i.e. V-19532, V-20330, V-19313, V-21239, V-21668, V-21265, HYT-90-21433, HYT-90-21443, HYT-90-21448, V-19347, HYT-100-74, V-19308, HYT-100-76 and HYT-100-47, showed very good tolerance against leaf and yellow rust and were recommended for further studied (table 35).

(d)-Seedling and adult plant resistance to leaf rust.

For seedling study, the leaf rust 1st trapped inoculum (collected during 1st week of December, 2022), was purified by single pustule method and further multiplied on Morocco under controlled glass house conditions. The whole set of crossing block (CB-2022-23) comprises of 403 lines/varieties as well as 184 entries of disease trap nurseries having PUWYT, 2022-23 & NUWYT, 2022-23 lines were sown in pots. After 7-9 days of germination, the plants were inoculated with leaf rust and the inoculated plants were kept in dew chamber at 15-20 °C and 100 % relative humidity for 12 hours and then shifted into glass house (Annexure II). After 14-16 days of inoculation, leaf rust scoring was done for leaf rust. While for adult plant study, the above-mentioned same entries were planted in the field for the selection of lines/varieties having adult plant resistance against both leaf rusts. The rust data was recorded twice at adult plant stage. The results indicates that Out of 184 entries, seventy six including PUWYT & NUWYT entries i.e., V-19532, V-20330, V-19313, V-21239, V-21668, V-21265, HYT-90-21433, HYT-90-21443, V-21448, V-19347, HYT-100-74, V-19308, HYT-100-76 and HYT-100-47 showed low infection type i.e. 0,1,2 against local leaf rust races while the remaining entries showed high infection type (3 & 4) against local leaf rust races. Similarly, out of 403 CB entries, 189 lines/varieties showed low (0,1 & 2) infection type while the remaining showed high (3 & 4) infection type (Annexure. II).

under stressed/fust moculated condition.					
V. code	Leaf rust	Stripe	V. code	Leaf	Leaf
	21/3/23	rust		rust	rust
		28/3/23		21/3/23	28/3/23
V-19532	20M	10M	V-21668	10M	10M
V-20330	20M	10M	V-21265	20M	10M
V-19317	10M	10M	V-19347	0	5M
V-21239	20M	0	HYT-100-74	0	0
V-21433	20M	10M	V-19308	TM	TM
V-21443	20M	0	HYT-100-76	TM	TM
V-21448	10M	20M	HYT-100-47	0	0
Morocco	100S	100S	Morocco	100S	100S
R = Resistant, MR = Moderately Resistant, M = MRMS = Moderately					
Resistant, M	Resistant, Moderately Susceptible, $S = Susceptible$, $T = traces$				

Table 35: Advanced wheat lines showing acceptable rust reaction under stressed/rust inoculated condition.

(e)-Rust management through chemical

For chemical control of rust diseases in wheat, the four proposed fungicides including Nativo (Trifloxystrobin + Tebuconazole 25%WG) @1gm/litre of H₂O, Tilt (Propiconazole) @2mL/litre of H₂O, Score (Difenconazole 250EC) @1mL/ litre of H₂O, and Amistar Top@2mL/litre of H₂O, were applied on rust susceptible wheat varieties i.e. Morocco and Galaxy-13, planted at research area of WRI, Faisalabad. The first spray was applied after tillering to jointing stage while the 2^{nd} spray was applied on flag leaf initiation to before flowering stage. The result indicates that Difenconazole and Trifloxystrobin + Tebuconazole perform best as compare to Propiconazole and Amistar Top (Table 36).

Treatments	1 st sp	ray	2 nd spray		
	Leaf Rust Severity		Final Leaf Rust Severity		
	23-02-23	28-02-23	09-03-23	14-03-23	
	Before	After	Before	After	
Morocco	LR	LR	LR	LR	
T ₁₋ Trifloxystrobin +	20S	5MS	10MSS	5MS	
Tebuconazole					
T ₂ - Propiconazole	20S	10MS	20MSS	10MS	
T ₃ -Difenconazole	20S	5MS	20MSS	5MS	
T ₄ - Control	20S	70S	80S	100S	
T_5 – AmistarTop	20S	5MS	20MSS	10MS	
Galaxy-13					
T ₁ -Trifloxystrobin +	20MSS	5MS	10MSS	5MS	
Tebuconazole					
T ₂ - Propiconazole	20 MSS	10MS	20MSS	10MS	
T ₃ -Difenconazole	20 MSS	5MS	20MSS	10MS	
T ₄ - Control	20 MSS	70S	80S	100S	
T ₅ – AmistarTop	20 MSS	5MS	20MSS	10MS	

Table 36: Efficacy of different fungicides against both leaf rust and striperust during cropping year 2022-23

Difenconazole and Trifloxystrobin + Tebuconazole perform best as compare to Propiconazole and Amistar Top against leaf rust. However, stripe rust infection was very low that is why the results are not reliable against stripe rust and needs confirmation with the addition of some new chemistry fungicides. Fungicides do not increase the yield potential of wheat varieties, but have the capacity to overcome the risk of losses resulting from rust and other fungal diseases.

BARLEY (Hordeum vulgare L.)

(a)-Maintenance and improvement barley crossing Block

One hundred and twenty genotypes (including 66 of 2-rowed + 54 of 6-rowed head types) were planted at the research area of Wheat Research Institute, Faisalabad. One entry of 2-rowed head and 10 entries of 6-rowed head types were rejected on the basis of mixed head rows, lodging intensity and disease infestation. True to type heads from remaining entries were selected and threshed to maintain the genetic purity. Some important traits are recorded as mentioned in table 37.

S.	Traits	Head type	Entry		
No.			Total	Rejected	Selected
1	Spike type	2-rowed head	66	1	65
2		6-rowed head	54	10	44
	Total		120	11	109

Table 37: Traits recorded in barley crossing block during 2022-23(i)-Entries

(ii)-Traits			
Traits	Ranges		
Plant height (cm)	80-108		
Days to heading	82-137		
Days to maturity	114-150		
	Traits Plant height (cm) Days to heading		

(b)-Filial generations

Out of 28 crosses attempted, sixteen (16) were threshed out successfully as F_0 seed while 15 from 21 entries in F_1 were promoted to next phase of generation. Similarly, heads of 16 from 19 entries in F_2 , 6 from 10 entries in F_3 and 12 from 22 entries in F_4 were threshed in bulk to advance the generation.

(c)-Preliminary yield trials

Twenty-eight advanced barley lines were sown under 2 and 6-rowed head types separately in two yield trials (A-I and A-II) against check varieties Sultan-17 (2-rowed) and Pearl-21 (6-rowed) in a lay-out of RCBD with a plot size of 5 m x 4 rows. Out of which, 8 lines of 2-rowed types viz. B-22004, B-22005, B-22011, B-22010, B-22003, B-22008, B-22007 and B-22002 produced maximum grain yield in A-I trial against 2-rowed check Sultan-17 (4094 Kg ha⁻¹). Similarly, 5 lines of 6-rowed types viz. B-22016, B-22016, B-22018, B-22027, B-22015, B-22026 and B-22023 produced maximum grain yield in A-II trial against 6-rowed check Pearl-21 (3237 kg/ha). However, advanced lines of B-22004 (4979 kg/ha), B-22005 (4737 Kg ha⁻¹), B-22016 (4227 Kg ha⁻¹) and B-220018 (4217 Kg ha⁻¹) remained top yielder lines in Preliminary Yield Trial (table 38).

S.		Α	-I		A-II			
No	V. code	Rowed	Yield	Ranking	V-code	Rowed	Yield	Ranking
		type	Kg ha⁻¹			type	Kg ha ⁻¹	
1	B-22001	2	3424	XVI	B-22015	6	4072	IV
2	B-22002	2	4120	IX	B-22016	6	4227	Ι
3	B-22003	2	4360	V	B-22017	6	2518	XII
4	B-20004	2	4979	Ι	B-20018	6	4217	II
5	B-22005	2	4737	II	B-22019	6	2383	XV
6	B-22006	2	4077	XI	B-22020	6	2483	XIV
7	B-22007	2	4152	VIII	B-22021	6	2492	XIII
8	B-22008	2	4197	VII	B-22022	6	3230	IX
9	B-22009	2	3702	XIII	B-22023	6	3252	VII
10	B-22010	6	4364	IV	B-22024	6	2307	XVI
11	B-22011	2	4479	III	B-22025	6	3218	Х
12	B-22012	2	3502	XV	B-22026	6	3682	VI
13	B-22013	2	4004	XII	B-22027	6	4114	III
14	B-22014	2	3634	XIV	B-22028	6	2797	XI
15	Sultan-17	2	4094	Х	Sultan-17	2	3934	V
16	Pear-21	6	4232	VI	Pear-21	6	3237	VIII

Table 38: Results (kg ha⁻¹) of barley preliminary yield trials during 2022-23.

(d)-Regular yield trial

Nineteen (19) barley lines were sown under 2-rowed and 6-rowed head types in two yield trials (B-I and B-II) separately against check varieties Sultan-17 (2-rowed) and Pearl-21(6-rowed) under RCBD with a plot size of 5m x 4 rows. Among them, 4 lines of 2-rowed types viz. B-21015, B-21034, B-21025 and B-21022 produced maximum grain yield in B-I trial against 2-rowed check Sultan-17 (3644 Kg ha⁻¹). Similarly, nine lines of 6-rowed types viz. B-21045,B-21046, B-21008, B-21001, B-21043, B-21013, B-21007, B-21044 and B-21048 produced maximum grain yield in B-II trial against high yielding check of 6-rowed head type Talbinah-21 (3905 Kg ha⁻¹). However, B-21015 (4570 Kg ha⁻¹), B-21034 (4362 Kg ha⁻¹), B-21045 (4767 Kg ha⁻¹) and B-21046 (4710 Kg ha⁻¹) considered to be top yielder lines in Regular Yield Trial of 2022-23 (table 39).

S.No		Ι	3-I			B-II		
	V. code	Rowed	Yield	Ranking	V-code	Rowed	Yield	Ranking
		type	Kg ha ⁻¹			type	Kg ha ⁻¹	
1	B-21015	2	4570	Ι	B-21001	6	4555	IV
2	B-21016	6	3075	XI	B-21007	6	4327	VII
3	B-21021	2	3564	VII	B-21008	6	4684	III
4	B-21022	2	4154	IV	B-21013	6 + 2	4339	VI
5	B-21025	2	4317	III	B-21043	6	4438	V
6	B-21032	2	3470	VIII	B-21044	6	4291	VIII
7	B-21033	2	3077	Х	B-21045	6	4767	Ι
8	B-21034	2	4362	II	B-21046	2	4710	II
9	B-21035	2	3414	IX	B-21048	6	4055	IX
10	B-21037	6	2812	XII	Sultan-17	6	4035	Х
11	Sultan-17	2	3644	VI	Pearl-21	2	3734	XII
12	Pear-21	6	4102	V	Talbinah-21	6	3905	XI

Table 39: Results (kg ha⁻¹) of barley regular yield trials (2022-23).

(e)-Barley rainfed trial

Seven advanced lines of barley were sown under RCBD with a plot size of 5 m x 4 rows to evaluate their yield potential against three check varieties viz. Sultan-17, Jau-17 and Pearl-21 under normal irrigated and rainfed conditions. On overall mean basis, the check Sultan-17 produced maximum grain yield of 3352 Kg ha⁻¹ followed by B-19026 with the yield of 3284 Kg ha⁻¹. However, in normal condition, B-18021 gave maximum yield of 4279 Kg ha⁻¹. Whereas in rainfed conditions check variety Sultan-17 remained high yielder with 2825 Kg ha⁻¹ followed by Jau-17 check variety (2585 Kg ha⁻¹). Moreover, under rainfed condition yield remained 2230 Kg ha⁻¹ whereas the yield of 3849 Kg ha⁻¹ was obtained in normal condition (table 40).

S.	V. Code	Rowed	Average	Rank
No.		Туре	Kg ha ⁻¹	
1	B-18009	2	2508	IV
2	B-19011	2	1631	Х
3	B-19022	2	1763	IX
4	B-19026	2	2122	VI
5	B-18021	6	2547	III
6	B-18016	6	1887	VIII
7	B-19017	6	2108	VII
8	Sultan-17	2	2825	Ι
9	Jau-17	2	2585	II
10	Pearl-21	6	2230	V
	Average			

Table 40: Yield data (kgha⁻¹) of barley advanced lines in rainfed condition (2022-23)

(f)-Punjab Uniform Barley Yield trial (PUBYT)

Ten advanced lines of barley including two check varieties (Sultan-17 and Pearl-21) were sown to evaluate yield potential at five different locations in the Punjab Province with a plot size of 5 m x 4 rows under RCBD. On overall mean basis, three promising lines viz. produced higher grain yield than both of the check varieties. However, B-20007 produced maximum grain yield over 5 locations with yield of 4624 kg/ha followed by B-21057(4437 Kg ha⁻¹) and B-21053 (4238 Kg ha⁻¹) against the yield of check Pearl-21(4123 Kg ha⁻¹) and Sultan-17(3969 Kg ha⁻¹) varieties (table 41).

	Table 41. There data (Kg ha) of barley advanced lines in FOD FF during 2022-25						
S.No.	V, Code	WRI, Fsd	Sgd.	Khanewal	KSK, GA	P. Pattan	Average
1	B-20009	2897	3195	4356	2660	4734	3564 IX
2	B-21053	4354	4145	4612	3677	4406	4238 III
3	B-21056	3474	3734	3761	3022	3939	3586 VIII
4	B-21057	4797	4534	4259	4028	4567	4437 II
5	B-20007	5044	4734	4395	4245	4706	4624 I
6	B-20014	2918	3114	3322	2411	3761	3109 X
7	B-21060	4384	4178	4145	3761	4250	4143 IV
8	B-21061	3624	3845	3928	3075	4106	3715 VII
9	Sultan-17	4162	4331	4134	3186	4034	3969 VI
10	Pearl-21	4614	4434	3995	3772	3800	4123 V
Average	2	4025	4024	4090	3383	4234	

Table 41: Yield data (Kg ha⁻¹) of barley advanced lines in PUBYT during 2022-23

(g)-National Uniform Barley Yield Trial (NUBYT)

Eleven decoded entries of barley crop were received from National Wheat Coordinator NARC, Islamabad and planted in three replications under RCBD layout across the country. Among eleven entries, four lines excelled higher grain yield over all entries through the country. However, Barley line of B-19026 produced maximum grain yields of 3520 Kg ha⁻¹ followed by an Entry of B-19022 (3268 Kg ha⁻¹). Detailed results are mentioned in the table 42.

Sr #	Code	Entry Name	Institutes	Baluchistan	Sindh	Punjab	КРК	Pakistan
1	5	B-19026 (2R)	WRI FSD	5157	3124	3075	1928	3520 I
2	4	B-19022 (2R)	WRI FSD	4352	3281	2861	1891	3268 II
3	1	B-18016 (2R)	WRI FSD	4486	2509	2866	1753	3068 III
4	3	B-19017 (6R)	WRI FSD	4208	2559	2866	2087	3050 IV
5	6	BARD-46 (2R)	BARDC Quetta	5234	2038	2705	1301	3036 V
6	2	B-19011 (2R)	WRI FSD	3846	2289	2877	1693	2817 VI
7	10	Sultan-17 (check) 2R	WRI FSD	3894	2405	3001	1664	2895 VII
8	11	Pearl-21 (Check) 6R	WRI FSD	4031	2070	2553	2556	2838V III
9	9	PRB-05 (2R)	CCRI Pirsabak	3590	2382	2772	2183	2810 IX
10	8	PRB-04 (2R)	CCRI Pirsabak	3749	2323	2529	2120	2760 X
11	7	BARD-2 (2R)	BARDC Quetta	3841	2027	2474	1715	2628 XI
G. M	ean			4217	2455	2780	1899	2972

Table 42: Yield (Kg ha⁻¹⁾ data of National Uniform Barley Yield Trial (NUBYT)

DURUM WHEAT (Triticum durum Desf.)

(a)-Maintenance of Germplasm and Hybridization

The main objective of research work on durum is to develop high yielding, good quality and disease resistant wheat varieties through interspecific crosses. Two forty (240) cultivars/ advanced lines of durum and triticale were sown to make the desirable cross combinations. Seventy (70) crosses were attempted and 60 fresh crosses were harvested for next year's planting.

(b)-Filial Generations (F1-F7)

F1-Generation

Sixty crosses were planted in a single row of 2.5m length along with their parents to compare their morphology and vigor. Fifty-four crosses having desirable traits were harvested to advance the further generation.

F2-F7 Generations

The filial generations (F_2 - F_7) were sown and selected for desirable traits. Segregating materials were surrounded by the spreader rows of highly susceptible variety (Morocco). Modified bulk method was used for selection in F_2 , F_3 and F_4 generations. From F_5 , uniform, disease resistant and desirable heads were selected to raise single head rows of F_6 generation. Outstanding and stable lines from F_6 were selected and harvested for inclusion in F_7 generation. Entries studied and selected in different generations are given in the table 43.

Sr. No.	Generations	Entries studied	Entries selected
1	DF_1	60	54
2	DF ₂	37	22
3	DF ₃	39	15
4	DF ₄	35	10
5	DF ₅	40	440 S.H
			(22 Crosses)
6	DF ₆	520 SHR	80 SHRP
7	DF ₇	60	44

Table 43: Details of filial generations of durum wheat

(c)-Station Yield Trials

The most promising lines selected from different sources i.e. F₇ generation, international nurseries/ trials, drought, heat stress and plant pathology program were evaluated in station yield trials (A & B trials).

(i)-Preliminary Durum Yield Trial (A-Trial)

During the reported year, preliminary drum yield trial of durum wheat was conducted under normal conditions. Trial consisted of 57 test entries/lines with 3 check varieties (Durum-97, Durum-21 & Akbar-19). The planting was done following RCBD design with two replications. The lines that performed better than the three checks are given in table 43 with their data regarding disease reaction and grain yield (table 44).

Sr.	Lines/	Disease reaction		Yield
No	Genotypes	Leaf rust	Yellow rust	(Kgha ⁻¹)
1	D-22031	0	0	5250
2	D-22006	0	0	5111
3	D-22002	10 MS/MR	0	4965
4	D-22056	0	0	5047

Table 44: Yield performance of promising durum lines in preliminary yield trials

(ii)-Regular Durum Yield Trial (B-Trial)

Regular durum wheat yield trial was conducted under normal conditions. Trial was planted with plot size of 6 m x 0.27 m using RCB design with three replications and harvested plot size was 5 m x 0.27 m. Trial consisted of 15 test entries/lines including 2 check varieties (Durum-21 & Akbar-19). Promising lines that surpassed three check varieties are given in table 44 with their respective data of disease reaction and grain yield.

Table 45: Yield performance of promising durum lines in regular yield trials

Sr.	Lines/	Disease	Yield	
No.	Varieties	Leaf rust	Yellow rust	(Kgha ⁻¹)
1	D-21022	0	0	4595
2	D-21044	0	10MS/MR	3825
3	D-21020	20MS/MR	0	3790

(d)-Provincial Uniform Durum Yield Trial (PUDYT)

During 2022-23, provincial uniform durum yield trial (PUDYT) was conducted across seven locations in Punjab. Trial consisted of eight entries with two check varieties (D-21 and Akbar-19). Two lines out of eight lines were selected on the basis of their yield against check (table 46).

Table 46: Yield performance of promising durum lines in PUDYT

Sr. No	Entry No	Yield (Kgha ⁻¹)
1	D-19939	4419
2	D-19943	4409

WHEAT RESEARCH SUB-STATION, MURREE

(a)-Development of crosses

A set of 100 lines of crossing bock were sown in the field in June 2022. Out of 100, thirty lines were selected for development of crosses. The selections were based upon previous year's rust disease data. Emasculation was done on 10 lines from each line and 10 direct crosses were attempted by using pollen from resistant wheat varieties. After harvesting the seed was stored for next sowing.

(b)-Screening of germplasm at seedling stage

Inoculum of two races of leaf rust was increased on a set of morocco during February-2022. That inoculum was then inoculated on germplasm consisting of 50 wheat lines including synthetic wheat obtained from The Chief Scientist, Wheat Research Institute, Faisalabad. The results showed that most of the local varieties and synthetics were tolerant against two races of leaf rust (MKTTS and MHTTS) showing a reaction 0-2. Only eight lines were susceptible against race MKTTS while five lines were susceptible against race MHTTS.

(c)-Performance of wheat lines during winter season

To check the performance of spring wheat varieties during the snowy period at WRSS, Murree, a set of 20 lines of wheat varieties (10559, 10567, 10568, 10569, 10570, 10571, 10572, 10587, 10589, 10599, 10617, 10618, 10619, 10620, 10622, 10637, 10639, 10640, 10678 and 10697) including two winter varieties were sown in the field on November 2022. The plants germinated normally and covered by the snow in the mid of December. The plants remained in the field during snow period and showed stunted growth after the snow melts. Plant growth remained poor after the snowy period, the spikes were small having only 1-2 seeds each and matured very late in early June 2022.

CEREAL TECHNOLOGY

(a)- Effect of fermented barley flour addition in whole wheat flour on the quality of chapatti

Chapatti quality was improved from fermented barley four addition in whole wheat flour and remained acceptable up to addition of 20% fermented barley flour in wheat flour. Protein and beta glucan content of chapatti increased with addition of fermented barley flour while fat, carbohydrates and energy content of chapatti decreased as content of fermented barley flour increased.

(b)-Qualitative analysis of wheat breeding material for iron and zinc

Flour of wheat breeding material was made through UDY Cyclone sample mill. Flour was used for the qualitative estimation of zinc (table 47) and iron (Table 48) concentration in wheat through Dithizone staining and Prussian Blue Procedure. In these analyses it was releveled that high Zinc (50 ppm or above) lines / varieties were 24, Medium Zinc (38-49 ppm) lines/varieties were 19 and Low Zinc (< 38ppm) lines/varieties were 10. High iron (50 ppm or above) lines / varieties were 10. High iron (50 ppm or above) lines / varieties were 19 and Low Zinc (< 37-49 ppm) lines/varieties were 19 and Low iron (< 37 ppm) lines/varieties were 19 and Low iron (< 37 ppm) lines/varieties were 19 and Low iron (< 37 ppm) lines/varieties were 19 and Low iron (< 37 ppm) lines/varieties were twelve.

Table 47. Diffizone staming for Zine estimation in wheat						
High Zinc (50-65ppm)	Medium Zinc (38-49ppm)	Low Zinc (< 38ppm)				
24 lines / varieties i.e. D1-	19 lines / varieties i.e. D1-1,	10 lines / varieties i.e.				
2, D1-04, D1-5, D1-8, D1-	D1-3, D1-28, D3-4, D3-5, D3-	D1-25, D3-19, D3-25, D5-3,				
9, D1-15, D1-16, D1-19,	9, D3-15, D3-16, D3-23, D3-	D5-25, D5-32, D5-40, D8-9,				
D1-23, D1-24, D3-1, D3-2,	24, D3-28, D5-1, D5-9, D5-15,	D8-15 and D8-16.				
D3-3, D3-38, D5-4, D5-08,	D5-39, D8-2, D8-3, D8-8 and					
D5-16, D5-19, D5-24, D5-	D8-19.					
28, D8-01, D8-05, D8-28						
and D8-38.						

 Table 47: Dithizone staining for zinc estimation in wheat

High Fe (50-65ppm)	Medium Fe (38-49ppm)	Low Fe (< 37ppm)
22 lines / varieties i.e. D1-	19 lines / varieties i.e.	12 lines / varieties i.e.
1, D1-2, D1-3, D1-04, D1-	D1-9, D1-15, D1-19, D1-28, D3-	D1-5, D1-23, D1-24, D3-05,
8, D1-16, , D1-25, D3-1,	9, D3-24, D3-38, D5-9, D5-15,	D3-15, D3-19, D3-23, D5-4,
D3-2, D3-3, D3-4, D3-16,	D5-25, D5-28, D5-32, D5-40,	D5-16, D8-9, D8-15 and D8-
D3-25, D3-28, D5-1, D5-3,	D8-2, D8-3, D8-4, D8-8, D8-19	16.
D5-08, D5-19, D5-24, D5-	and D8-23.	
39, D8-01, and D8-05.		

(d)-Quality evaluation of bread wheat advanced lines/varieties

Five hundred and sixty entries in National Uniform Wheat Yield Trials and Punjab Wheat Yield Trials collectively were analyzed for their qualitative and quantitative potential. This study was conducted to screen advanced lines for different quality traits such as 1000 grain weight, test weight, protein, starch and gluten content. Five hundred and sixty entries / advanced lines included in National Uniform Wheat Yield Trials and Provincial Wheat Yield Trials for the year 2022-23 were tested for comprehensive quality parameters especially grain weight, test weight, protein, starch and gluten contents. In NUWT samples, minimum value of

1000 grain weight, test weight, protein, starch content and gluten was 31.20g, 70.0 Kg/hl, 10.6%, 50.9% and 18.0%, recorded in plot no. P16, P149, P144, P92 and P24, respectively while maximum value of 1000 grain weight, test weight, protein, starch content and gluten was 50.0g, 78.5 Kg/hl, 16.2%, 56.7% and 35%, noted in plot no. P69, P96, P70, P110 and P23 in respective mode.

In the same manner, PUWT samples showed minimum value of 1000 grain weight (30.08g), test weight (70.0 Kg/hl), protein (12.9%), starch content (49.7%) and gluten (22.0%) in entry No.3, 3, 26, 9 and 20 while maximum value of 1000 grain weight (48.73g), test weight (79.4 Kg/hl), protein (16.3%), starch content (55.8%) and gluten (35.0%) was found in entry No.15, 51, 58, 40 and 49, respectively (table 49 and 50).

Dlat	1			eld trials (No		
Plot No	1000	Test	Protein	Moisture (%)	Starch	Gluten
No.	grain weight (g)	weight	(%)	(%)	(%)	(%)
P1	weight (g) 36.30	(Kg/hl) 74.20	15.30	9.60	54.20	29.00
P2	38.60	73.70	13.30	9.00	53.90	29.00
P3	34.40		14.20	9.40		29.00
		72.80	_		52.90	
P4	37.15	73.60	15.10	9.60	53.40	28.00
P5	42.20	74.20	13.70	9.50	53.30	24.00
P6	33.10	70.80	14.10	9.60	53.60	27.00
P7	40.00	74.20	13.80	9.30	54.60	23.00
P8	39.30	74.60	13.70	9.60	54.50	26.00
P9	35.60	71.50	13.20	9.70	54.10	24.00
P10	48.80	74.80	13.70	10.10	53.50	24.00
P11	41.70	73.60	13.80	9.80	53.80	24.00
P12	36.60	74.30	15.10	9.70	53.20	30.00
P13	39.60	73.70	14.30	9.70	52.90	23.00
P14	40.00	74.60	15.40	9.60	53.70	24.00
P15	34.50	73.20	12.70	10.20	54.90	25.00
P16	31.20	70.40	13.60	10.00	51.90	29.00
P17	42.65	73.50	14.60	10.30	51.80	26.00
P18	46.80	76.80	15.70	9.80	51.50	32.00
P19	33.80	71.80	14.90	9.80	54.20	30.00
P20	33.00	70.40	15.30	9.90	51.90	30.00
P21	36.80	74.30	14.50	9.20	52.50	25.00
P22	41.60	74.60	14.80	9.60	53.90	28.00
P23	34.70	74.20	16.00	9.40	53.70	35.00
P24	37.10	73.30	13.20	9.70	54.50	18.00
P25	36.00	75.30	14.00	9.60	54.20	24.00
P26	36.90	71.20	12.70	9.80	54.80	23.00
P27	39.40	74.70	13.20	9.70	54.70	22.00
P28	37.50	72.30	13.50	9.60	53.80	24.00
P29	38.70	73.40	13.60	9.20	52.60	26.00
P30	41.10	76.20	13.50	9.60	54.60	24.00
P31	34.95	74.30	12.80	9.80	55.10	20.00
1.51	51.75	7 11.50	12.00	2.00	22.10	20.00

 Table 49. National Uniform wheat yield trials (Normal 2022-23)

P32	34.90	73.60	13.40	10.10	54.10	26.00
P33	40.00	73.20	13.50	9.80	53.20	24.00
P34	37.70	73.80	13.50	9.60	53.50	28.00
P35	37.45	73.60	13.80	9.30	54.60	23.00
P36	37.30	75.60	13.50	9.60	55.60	26.00
P37	36.40	72.40	13.10	9.60	54.30	25.00
P38	36.50	74.20	15.00	9.90	53.90	29.00
P39	40.00	73.70	13.40	9.80	52.90	19.00
P40	38.60	74.50	14.20	9.70	53.80	26.00
P41	37.35	71.20	14.70	9.70	53.10	28.00
P42	41.00	73.40	14.20	10.00	54.00	26.00
P43	49.90	75.00	14.90	10.20	52.40	28.00
P44	48.25	73.50	15.30	9.40	52.80	32.00
P45	35.00	72.60	14.00	9.70	54.20	26.00
P46	34.00	71.80	13.30	9.90	52.20	24.00
P47	33.90	72.00	14.10	9.50	53.60	27.00
P48	36.20	71.80	15.20	9.90	51.40	29.00
P49	39.90	71.00	12.40	9.90	54.30	21.00
P50	34.20	71.80	14.40	9.40	54.90	27.00
P51	41.60	75.60	12.70	9.90	55.80	21.00
P52	35.00	73.60	14.60	9.90	53.40	27.00
P53	38.00	74.30	14.60	9.50	53.60	27.00
P54	40.00	71.20	13.00	9.40	54.50	25.00
P55	38.35	75.40	13.80	9.60	53.90	25.00
P56	48.00	74.80	13.60	9.90	54.30	24.00
P57	36.45	74.50	13.40	9.30	55.00	24.00
P58	38.50	73.50	14.50	9.40	53.10	28.00
P59	35.75	72.70	15.10	9.50	52.90	30.00
P60	35.00	73.50	14.20	9.80	53.60	26.00
P61	38.30	74.80	13.60	9.50	55.50	28.00
P62	40.70	74.50	13.40	9.70	53.30	25.00
P63	34.60	72.40	13.20	10.00	53.40	23.00
P64	40.65	73.20	12.80	9.60	55.30	22.00
P65	40.90	74.90	13.00	9.40	54.20	23.00
P66	33.10	74.20	13.80	9.80	52.70	27.00
P67	39.00	72.70	13.40	9.60	54.00	25.00
P68	36.50	70.50	14.50	10.30	52.30	26.00
P69	50.00	72.00	14.30	9.60	53.50	27.00
P70	42.00	75.30	16.20	9.20	53.00	32.00
P71	37.75	72.50	15.20	9.90	52.60	29.00
P72	39.35	76.80	15.10	9.50	53.60	29.00
P73	38.20	74.70	14.80	9.40	52.20	28.00
P74	36.40	73.00	14.20	9.40	53.80	27.00

P75	39.25	75.60	15.70	9.60	52.80	30.00
P76	46.00	73.20	13.40	9.80	54.40	29.00
P77	34.90	73.80	13.10	9.90	53.80	26.00
P78	40.40	72.20	14.20	9.70	53.10	27.00
P79	36.60	73.60	14.30	9.90	53.10	26.00
P80	37.10	73.50	14.70	9.30	53.30	31.00
P81	38.90	72.80	15.30	9.60	52.50	31.00
P82	32.25	71.80	15.70	9.60	52.40	33.00
P83	37.40	74.20	14.20	9.60	53.90	27.00
P84	34.60	74.60	15.20	9.60	52.50	31.00
P85	34.25	73.80	13.20	9.90	53.10	24.00
P86	35.00	72.80	14.10	9.80	53.70	27.00
P87	47.60	74.60	15.50	9.90	51.70	33.00
P88	32.60	71.00	15.80	9.50	52.40	32.00
P89	42.70	75.60	15.70	9.60	53.60	31.00
P90	38.00	71.20	13.70	10.00	52.70	27.00
P91	36.10	73.70	13.20	9.70	54.50	25.00
P92	35.40	72.80	15.50	9.50	50.90	26.00
P93	38.20	73.60	13.30	9.80	52.00	25.00
P94	35.80	73.20	14.40	9.50	53.70	26.00
P95	34.80	73.80	14.50	9.30	54.10	29.00
P96	40.00	74.70	15.20	9.30	53.20	26.00
P97	34.90	72.40	13.60	9.90	54.30	26.00
P98	32.60	73.20	13.20	9.60	54.00	24.00
P99	36.00	76.20	13.70	9.80	54.40	26.00
P100	37.95	71.80	12.90	9.60	53.40	23.00
P101	39.95	72.00	15.40	9.80	51.70	31.00
P102	36.80	75.60	15.00	9.60	53.40	31.00
P103	36.25	73.70	14.50	9.70	54.40	28.00
P104	34.00	75.00	13.80	9.80	52.30	25.00
P105	38.00	73.80	14.10	9.70	52.50	24.00
P106	32.80	73.60	14.90	9.50	52.90	30.00
P107	39.65	73.20	15.10	9.40	53.80	29.00
P108	43.00	74.20	13.90	9.60	54.60	26.00
P109	31.60	75.30	15.80	9.80	52.20	32.00
P110	39.20	74.60	16.10	9.60	52.10	32.00
P111	32.60	72.00	14.20	9.70	53.10	28.00
P112	37.00	73.50	15.20	9.60	52.50	29.00
P113	36.00	72.80	15.30	9.40	53.30	31.00
P114	35.00	71.60	15.40	9.60	51.50	31.00
P115	35.00	71.00	15.20	9.60	52.20	30.00
P116	35.00	72.80	15.00	9.80	53.00	27.00
P117	38.70	72.30	15.10	9.60	51.40	30.00
P118	45.00	74.20	15.90	9.40	52.20	33.00

P119	37.40	72.60	15.00	9.60	52.60	28.00
P120	36.00	75.40	15.20	9.80	54.20	26.00
P121	35.20	70.80	15.70	9.40	52.20	33.00
P122	36.00	71.50	15.20	9.70	52.80	30.00
P123	35.50	74.30	14.70	9.80	52.40	28.00
P124	34.85	73.80	13.90	9.50	54.30	26.00
P125	39.90	76.00	14.20	9.20	54.30	26.00
P126	37.50	74.30	14.80	10.00	53.80	26.00
P127	38.50	72.80	14.30	9.40	54.50	28.00
P128	37.05	74.20	15.70	10.10	51.80	32.00
P129	37.40	74.80	14.10	9.80	53.00	27.00
P130	34.75	72.10	14.60	9.90	52.90	28.00
P131	39.20	71.70	13.10	9.30	55.00	23.00
P132	44.10	75.30	13.20	9.20	53.20	25.00
P133	39.40	73.60	15.90	9.30	52.40	32.00
P134	49.00	75.60	15.00	9.90	52.20	29.00
P135	37.55	74.20	13.90	9.60	52.80	24.00
P136	32.70	70.70	14.40	9.80	53.40	27.00
P137	37.35	74.80	13.80	9.70	53.60	26.00
P138	40.00	74.60	15.20	9.30	53.50	32.00
P139	40.00	74.20	14.40	9.50	54.70	28.00
P140	39.35	71.70	14.40	9.70	54.10	27.00
P141	35.85	70.60	14.80	9.70	53.70	26.00
P142	41.45	76.70	12.80	9.50	55.50	23.00
P143	39.95	72.30	12.40	9.60	54.90	23.00
P144	41.10	75.30	12.60	9.60	53.80	22.00
P145	35.40	70.80	13.90	10.50	52.50	25.00
P146	35.00	74.80	13.70	9.50	53.90	26.00
P147	41.50	76.20	14.40	9.60	54.60	28.00
P148	47.20	74.30	14.40	9.90	53.20	27.00
P149	37.80	70.00	12.90	9.90	53.90	21.00
P150	39.85	76.80	13.80	9.50	54.00	25.00
P151	39.60	73.20	12.80	9.30	54.90	23.00
P152	40.90	76.30	13.20	9.50	55.20	23.00
P153	37.75	74.60	11.80	9.70	55.50	20.00
P154	41.00	75.00	13.80	9.60	53.30	26.00
P155	34.30	70.20	14.50	9.40	52.90	29.00
P156	36.95	76.40	14.00	9.60	53.20	28.00
P157	36.20	73.60	14.60	9.60	53.30	29.00
P158	31.50	72.30	14.90	9.90	52.40	29.00
P159	33.70	70.80	14.70	9.30	53.70	28.00
P160	35.80	75.70	16.00	9.60	53.10	34.00
Range	31.2-50.0	70.0-76.8	11.8-16.2	9.2-10.5	50.9-55.8	18.0-35.0

Plot No.	1000 grain weight (g)	Test weight (Kg/hl)	Protein (%)	Moisture (%)	Starch (%)	Gluten (%)
P1	36.5	70.5	14.8	9.8	53.5	25.0
P2	40.5	75.3	14.3	9.8	54.7	26.0
P3	40.0	74.3	13.4	10.0	54.5	23.0
P4	40.6	75.2	13.4	9.9	54.9	25.0
P5	40.2	73.2	13.0	10.3	54.9	21.0
P6	40.0	75.6	12.0	10.3	55.9	19.0
P7	41.7	74.0	11.6	10.4	56.7	17.0
P8	50.0	77.3	13.1	10.1	55.2	23.0
P9	35.8	73.4	13.2	10.2	55.2	22.0
P10	48.7	74.3	13.6	10.0	55.0	20.0
P11	40.0	73.7	12.7	10.1	55.9	22.0
P12	42.8	71.4	12.6	10.3	55.4	20.0
P13	42.2	73.4	12.5	10.4	55.2	19.0
P14	38.1	75.7	12.0	10.1	56.5	22.0
P15	35.6	77.2	13.0	10.0	55.2	21.0
P16	38.5	76.4	13.0	10.3	55.6	21.0
P17	42.6	70.2	13.0	10.5	52.9	23.0
P18	47.7	74.0	11.8	10.6	54.6	21.0
P19	43.5	74.5	11.6	10.3	55.8	18.0
P20	39.0	72.3	12.8	9.9	54.9	22.0
P21	37.2	74.8	12.6	10.2	55.3	22.0
P22	40.0	73.6	12.2	10.0	56.2	20.0
P23	38.9	75.4	12.4	10.1	56.0	20.0
P24	49.5	72.6	11.3	10.1	55.7	17.0
P25	40.3	71.6	11.1	10.6	55.8	14.0
P26	37.8	73.2	12.2	10.4	52.6	16.0
P27	41.9	74.8	12.1	10.2	55.9	18.0
P28	38.3	75.6	11.9	10.3	55.2	17.0
P29	35.3	73.4	13.9	10.2	55.0	24.0
P30	36.6	76.3	14.1	10.2	54.8	25.0
P31	38.3	71.4	13.7	9.9	55.8	25.0
P32	37.6	76.4	13.0	9.9	54.2	23.0
P33	38.2	74.2	13.1	10.3	54.2	22.0
P34	48.2	75.2	11.3	10.3	56.5	18.0
P35	45.8	73.2	12.1	10.2	55.2	18.0
P36	41.5	76.5	11.6	10.7	56.0	18.0
P37	40.0	73.2	11.1	10.5	56.5	17.0
P38	38.9	74.2	12.0	10.2	54.2	18.0
P39	39.3	73.6	12.8	10.2	55.6	19.0
P40	42.0	78.0	11.4	10.5	56.2	17.0

 Table 50: National Uniform wheat yield trials (rainfed 2022-23)

P41	49.6	72.3	13.0	10.0	55.1	21.0
P42	41.5	75.0	12.3	10.6	55.0	19.0
P43	48.2	75.8	13.0	10.4	54.0	21.0
P44	39.3	76.2	11.7	10.4	55.5	18.0
P45	37.1	73.2	12.3	10.8	54.6	17.0
P46	37.9	75.2	11.8	10.5	55.1	18.0
P47	37.0	74.0	11.8	10.2	56.0	18.0
P48	37.5	74.2	11.8	10.6	55.4	15.0
P49	39.4	75.6	11.3	10.4	56.7	19.0
P50	36.2	74.2	12.2	10.6	55.1	17.0
P51	47.6	72.0	11.9	10.6	56.2	19.0
P52	41.8	75.3	12.2	10.2	55.1	19.0
P53	39.4	74.6	12.7	10.4	54.3	20.0
P54	39.9	70.5	11.9	10.1	56.0	20.0
P55	46.2	77.5	12.8	10.1	54.8	20.0
P56	42.1	73.7	12.8	10.3	55.5	20.0
P57	37.8	74.7	12.9	10.2	55.7	21.0
P58	37.6	73.2	13.8	10.0	53.1	23.0
P59	40.0	74.2	15.2	9.8	53.1	29.0
P60	36.3	75.2	14.3	10.1	53.5	24.0
P61	37.4	73.8	14.3	10.2	54.9	27.0
P62	38.0	74.0	13.4	10.1	54.4	22.0
P63	35.8	72.1	13.1	10.1	55.0	23.0
P64	33.7	72.7	12.6	10.9	54.4	21.0
P65	36.5	75.3	13.0	10.5	54.0	21.0
P66	38.2	76.2	12.7	10.4	55.9	20.0
P67	39.2	75.3	13.0	10.2	54.6	19.0
P68	36.2	72.4	11.9	10.2	54.6	17.0
P69	41.3	73.2	11.0	10.6	55.6	15.0
P70	41.0	75.8	11.5	10.2	56.1	14.0
P71	37.3	78.0	10.8	10.4	56.6	14.0
P72	40.5	73.6	11.5	10.2	56.6	18.0
P73	41.2	76.4	12.3	10.1	56.2	21.0
P74	40.8	74.2	12.0	10.1	55.2	18.0
P75	39.7	74.6	12.4	10.2	53.6	20.0
P76	43.0	73.0	12.1	10.2	56.6	19.0
P77	32.9	73.6	14.0	10.0	54.1	26.0
P78	39.3	75.2	13.1	10.3	53.8	21.0
P79	42.5	78.2	12.1	10.3	54.7	15.0
P80	42.2	71.6	12.5	10.2	56.2	21.0
P81	44.1	75.6	11.8	10.3	55.6	18.0
P82	41.7	75.7	12.2	10.7	55.5	16.0
P83	37.3	70.2	11.4	10.4	56.1	16.0
P84	37.0	76.0	12.2	10.2	56.1	21.0

P85	40.7	74.3	11.0	11.5	56.3	15.0
P86	42.9	74.7	12.4	10.6	54.7	19.0
P87	41.3	74.2	12.2	10.3	55.4	17.0
P88	37.2	74.6	12.2	10.2	56.5	20.0
P89	49.5	78.0	13.5	9.8	55.6	23.0
P90	39.2	73.4	11.3	10.6	56.4	16.0
P91	34.3	74.6	12.8	10.3	53.9	20.0
P92	41.7	76.3	12.3	10.4	54.8	17.0
P93	42.2	74.0	11.5	10.2	56.2	16.0
P94	41.7	77.7	12.3	10.4	55.8	20.0
P95	45.0	75.8	12.1	10.7	54.7	20.0
P96	38.9	78.5	11.7	10.7	55.7	17.0
P97	38.5	72.0	13.4	10.4	54.3	23.0
P98	38.2	75.7	11.0	10.6	56.0	16.0
P99	45.7	73.7	13.2	10.4	54.8	21.0
P100	43.2	75.2	11.1	10.3	56.2	16.0
P101	41.2	77.6	11.9	10.4	56.3	20.0
P102	40.0	77.8	12.5	10.1	56.0	21.0
P103	41.6	74.7	11.7	10.4	55.4	16.0
P104	38.3	74.8	11.8	10.5	54.1	16.0
P105	42.6	76.0	12.0	10.0	55.1	17.0
P106	48.7	77.2	11.8	10.3	54.2	18.0
P107	41.5	74.2	12.0	10.4	56.2	19.0
P108	41.6	76.3	11.4	10.4	56.5	17.0
P109	41.6	73.6	11.0	10.5	56.4	14.0
P110	42.3	75.3	11.1	10.2	56.7	15.0
P111	37.9	74.6	11.3	10.5	56.6	16.0
P112	49.6	74.5	11.7	10.2	56.1	15.0
P113	39.5	74.2	12.3	10.2	55.9	20.0
P114	49.9	74.5	12.2	10.2	55.3	19.0
P115	38.4	73.6	12.6	10.5	55.4	21.0
P116	39.4	73.8	12.6	10.1	55.0	18.0
P117	38.2	70.6	14.0	10.5	53.3	24.0
P118	42.4	74.7	13.0	10.2	54.0	21.0
P119	35.8	72.3	13.7	9.9	54.6	24.0
P120	39.7	75.6	13.3	10.4	54.7	22.0
P121	39.0	72.4	13.9	10.1	54.1	24.0
P122	40.7	76.6	14.1	10.0	55.0	26.0
P123	37.3	72.8	13.9	10.0	53.6	23.0
P124	39.6	74.7	12.5	10.3	55.6	19.0
P125	41.5	78.0	12.8	10.2	55.5	19.0
P126	41.8	77.6	12.5	10.0	56.3	20.0
P127	38.9	75.4	11.7	10.7	56.0	17.0
P128	41.2	74.2	12.6	10.0	54.9	20.0

P129	40.1	77.4	12.0	10.2	54.2	18.0
P130	41.3	75.3	12.4	10.0	55.0	18.0
P131	45.0	75.0	11.3	10.5	55.7	14.0
P132	43.1	76.4	12.2	10.0	54.2	18.0
P133	42.8	71.7	11.3	10.2	56.3	16.0
P134	48.9	77.2	12.3	10.2	55.1	19.0
P135	38.2	74.3	11.3	10.2	55.5	16.0
P136	37.4	78.0	12.4	10.0	53.6	17.0
P137	40.0	75.2	12.8	10.0	55.5	22.0
P138	38.3	76.2	12.5	10.0	55.9	21.0
P139	42.2	70.4	12.6	10.1	55.0	20.0
P140	40.8	74.2	13.2	10.2	55.1	21.0
P141	42.1	72.2	12.6	10.1	55.8	18.0
P142	39.2	75.7	11.9	10.3	55.8	18.0
P143	40.3	73.2	11.3	10.3	55.8	16.0
P144	42.1	77.0	10.6	10.4	56.2	14.0
P145	42.7	75.2	11.1	10.0	56.2	15.0
P146	36.8	78.3	11.2	10.4	56.2	16.0
P147	41.6	75.3	11.8	10.6	55.8	17.0
P148	45.0	75.6	12.5	10.6	54.5	20.0
P149	42.2	74.7	12.8	10.0	53.8	19.0
P150	41.0	73.8	13.1	10.3	54.9	23.0
P151	36.8	75.4	13.2	10.4	54.8	22.0
P152	40.7	76.2	12.6	10.0	54.2	20.0
P153	42.2	75.2	13.0	9.8	54.6	18.0
P154	40.0	70.4	13.0	10.2	55.0	20.0
P155	37.9	73.6	11.5	10.3	55.8	17.0
P156	43.3	76.2	11.1	10.4	56.4	15.0
P157	40.8	76.4	11.8	10.2	55.2	18.0
P158	36.4	75.6	11.9	10.0	55.4	17.0
P159	41.3	76.3	11.3	10.3	56.3	15.0
P160	40.0	77.7	12.8	10.2	55.5	20.0
Range	32.9-50.0	70.2-78.5	10.6-12.3	9.8-11.5	52.6-56.7	14.0-29.0

 Table 51: Punjab Uniform wheat yield trials (Normal 2022-23)

Entry	1000 grain weight (g)	Test weight	Starch (%)	Protein (%)	Gluten (%)	Moisture (%)
		(Kg/hl)				
1	39.98	73.55	53.85	13.50	23.00	9.85
2	34.58	72.10	54.10	14.60	28.00	9.40
3	30.08	70.70	52.35	15.50	30.00	9.55
4	36.80	74.55	53.35	15.60	30.00	9.60
5	38.38	75.70	54.20	13.60	24.50	9.75

6	37.03	72.80	52.90	15.40	30.50	9.60
7	36.70	71.70	54.30	13.75	26.50	9.75
8	37.40	72.25	53.40	13.55	24.50	9.80
9	36.68	74.40	53.95	13.95	26.00	9.90
10	42.48	72.10	53.15	13.95	24.00	10.25
11	40.23	74.90	53.40	14.70	28.00	9.65
12	38.23	73.30	55.65	13.70	26.00	9.50
13	36.58	73.60	54.95	13.15	23.50	9.80
14	38.33	75.55	53.75	14.65	26.00	9.75
15	34.63	71.30	53.95	14.55	28.50	9.65
16	37.35	73.10	53.20	15.15	29.50	9.45
17	38.10	74.30	54.25	14.75	27.50	9.75
18	38.48	74.70	54.15	14.15	25.50	9.70
19	40.90	72.85	54.45	13.35	25.00	10.00
20	38.15	73.30	54.50	13.00	22.00	9.70
21	40.40	71.30	54.00	13.70	24.00	9.95
22	37.20	71.75	53.35	14.60	26.50	9.60
23	40.15	73.30	53.55	14.30	27.50	9.90
24	35.18	72.40	52.45	14.90	31.00	9.55
25	35.73	73.10	52.90	14.35	27.00	9.90
26	38.35	72.40	54.25	12.90	23.50	9.70
27	38.33	73.30	54.30	14.45	27.00	9.55
28	34.40	73.30	53.65	14.40	27.50	9.85
29	41.10	73.55	53.10	15.55	29.50	9.55
30	40.35	73.45	54.05	13.65	23.50	9.80
31	34.95	74.40	54.25	13.25	24.50	9.85
32	38.40	72.90	53.75	14.25	26.00	9.65
33	40.58	73.75	52.85	14.80	28.50	9.70
34	32.35	72.60	53.60	13.85	26.50	9.65
35	39.53	70.95	52.65	14.75	25.50	9.95
36	33.38	72.05	53.50	13.80	25.50	9.95
37	41.48	75.20	54.10	15.60	31.50	9.55
38	39.80	72.00	53.15	14.80	28.00	9.60
39	40.70	73.65	53.20	15.15	29.00	9.65
40	37.40	74.40	55.75	13.45	25.50	9.60
41	37.88	72.60	53.65	13.45	25.00	9.80
42	39.15	73.90	53.40	14.05	27.00	9.75
43	35.00	74.05	53.65	14.90	30.00	9.60
44	36.80	73.95	53.95	14.40	25.50	9.60
45	33.70	72.55	54.30	13.50	24.00	9.80
46	39.85	75.50	53.60	15.05	28.50	9.80
47	35.73	70.85	52.95	15.50	30.50	9.55
48	36.88	73.20	54.55	13.75	27.50	9.55
49	42.05	74.15	53.45	15.25	29.50	9.60

50	40.25	71.70	53.25	14.55	28.50	9.65
51	40.40	73.95	53.55	15.55	30.50	9.45
52	36.05	72.00	53.35	14.90	28.50	9.55
53	37.90	71.30	54.05	13.75	25.00	9.70
54	39.48	73.70	53.50	14.25	26.50	9.70
55	43.18	72.45	54.05	14.50	26.50	9.50
56	32.73	73.45	53.50	14.05	26.50	9.50
57	38.58	72.45	54.50	14.05	26.50	9.65
58	33.43	70.90	54.00	14.00	26.00	9.45
59	38.88	70.85	53.05	15.05	29.00	9.65
60	36.30	72.30	53.35	14.15	26.50	9.80
Range	30.08-43.18	70.7-75.7	52.35-55.75	12.90-15.60	22.0-31.50	9.40-10.25

	Table 52	2: Punjab Unif	orm wheat yie	eld trials (rainf	fed 2022-23)	
T	1000 grain	Test weight	Starch	Protein	Gluten	Moisture
Entry	weight (g)	(Kg/hl)	(%)	(%)	(%)	(%)
1	38.78	72.05	53.80	13.80	24.50	10.05
2	35.60	73.10	53.25	14.95	29.50	9.75
3	35.89	69.95	50.65	15.85	33.00	9.90
4	44.35	74.85	53.05	14.85	26.50	9.85
5	43.98	76.90	52.40	15.30	30.00	10.00
6	32.19	72.10	52.20	15.20	30.00	9.65
7	38.35	74.40	53.20	14.85	29.00	10.00
8	42.10	73.50	53.05	14.60	27.50	10.10
9	39.39	73.90	49.65	15.10	28.50	9.65
10	42.51	75.25	51.70	16.10	32.50	9.70
11	38.78	77.70	51.45	15.95	30.50	9.95
12	37.72	74.90	53.90	14.65	27.50	9.95
13	36.41	73.30	53.15	14.65	27.50	9.80
14	48.14	78.10	52.30	15.90	29.00	9.85
15	48.73	74.60	53.40	14.10	25.00	10.20
16	34.71	76.10	53.10	15.30	30.00	9.90
17	41.26	74.70	52.55	15.80	30.50	9.75
18	37.20	77.85	53.45	14.95	29.00	9.70
19	35.44	74.30	53.80	14.20	26.50	9.70
20	37.88	77.70	52.70	15.55	29.50	9.50
21	38.28	75.35	53.00	14.95	26.50	9.85
22	41.68	73.95	53.25	14.70	27.50	10.05
23	35.78	77.05	52.90	15.05	29.50	9.90
24	36.83	73.60	51.60	15.80	30.50	10.10
25	43.23	74.95	51.50	15.90	31.50	10.20
26	37.73	75.50	53.00	14.75	27.00	10.00
27	45.26	76.85	53.10	13.85	25.00	10.05
28	37.20	72.80	52.00	15.55	30.50	9.70
29	45.59	73.45	52.50	15.30	33.50	9.85

30	31.10	75.30	54.25	13.40	23.00	9.90
31	40.56	74.50	51.30	15.40	28.00	9.70
32	36.77	76.40	52.70	14.80	26.50	9.90
33	41.78	75.65	51.65	15.55	33.50	9.80
34	47.03	74.65	52.00	15.65	30.50	10.10
35	38.29	76.10	51.15	16.20	32.50	9.95
36	33.23	73.90	51.05	16.10	31.00	10.00
37	41.74	74.15	52.95	15.25	30.50	9.85
38	39.95	75.50	52.95	15.35	26.50	9.70
39	38.70	73.00	54.35	13.95	26.00	9.65
40	43.60	75.75	53.80	14.60	28.00	10.10
41	37.03	72.95	52.40	14.75	27.50	9.90
42	39.73	77.20	51.50	15.90	31.50	9.90
43	39.18	76.40	52.65	15.60	31.00	9.80
44	36.39	74.15	53.60	14.90	29.00	9.60
45	41.91	76.15	53.05	15.35	29.00	9.70
46	40.33	76.85	52.05	15.55	29.50	9.70
47	37.85	71.80	51.90	14.95	29.00	9.95
48	41.08	75.20	53.10	14.25	25.00	10.00
49	39.54	74.40	51.85	15.70	35.00	9.65
50	40.79	73.15	52.65	15.35	33.00	9.85
51	39.88	79.40	52.30	15.80	30.00	9.55
52	41.70	73.20	53.65	13.95	26.50	10.05
53	36.45	75.90	52.70	15.15	28.50	9.75
54	41.55	74.60	52.95	14.85	27.50	9.80
55	41.13	76.25	51.25	15.45	29.50	9.95
56	38.50	73.85	52.80	15.45	29.00	9.75
57	46.75	76.35	52.05	15.45	29.50	9.70
58	40.20	76.10	50.80	16.25	30.50	9.80
59	41.48	73.55	52.65	15.20	31.50	9.50
60	39.84	73.55	52.95	14.65	28.50	9.95
Range	31.10-48.73	69.95-79.40	49.65-54.35	13.40-16.25	23.0-35.0	9.50-10.20

(e)-Determination of quality traits in advanced lines of barley Nineteen barley advanced lines/varieties under different Trials (2022-23) were analyzed for quality traits. (table 53)

Table 53: Quality traits in advanced lines of barley

Advance lines		Quality Traits						
	1000 grain wt. (g)	Test wt. (kg hL ⁻¹)	Protein (%)					
Advance lines	31.40-45.95	46.7-61.0	12.0-14.7					
	B-21048-	B-21001-	B-21001-					
	Jau-21	E.21022	Pearl-21					

(f)-Effect of planting time on grain quality traits

(i)-Thousand grain weight (g)

Regarding thousand grain weight, V-20337, V-19532 and HYT-100-76 performed best in first two sowing dates i.e. 20th October and 1st November. But when we see the values in third sowing date (10th November), the toppers were HYT-100-47, HYT-100-74 & V-19308. Among checks, Dilkash-21 & Arooj-22 performed well in initial sowing dates whereas Akbar-19 gradually showed potential with delayed sowing (table 54).

Sr. No.	Varity/Cultivar	D1	D2	D3	D4	D5	D6	D7
1	Akbar-19	30.14	33.91	35.17	37.47	34.07	38.77	38.52
2	Subhani-21	28.65	31.35	28.37	36.23	26.46	32.11	28.52
3	Dilkash-21	36.88	38.00	37.44	36.45	36.61	33.52	35.80
4	Arooj-22	37.68	39.88	39.83	35.83	36.05	37.96	37.44
5	V-19347	33.85	38.36	39.55	35.03	33.93	38.12	38.19
6	HYT-100-74	35.94	41.09	40.41	36.32	38.07	37.52	37.17
7	V-19308	36.23	35.45	42.12	35.78	34.43	33.51	37.85
8	HYT-100-76	39.13	39.91	38.45	40.29	36.97	33.35	32.50
9	HYT-100-47	38.29	36.17	41.53	41.17	35.72	35.65	37.83
10	V-20337	40.37	40.51	39.00	38.70	37.54	35.19	37.20
11	V-19532	41.04	39.32	39.85	39.92	42.08	39.20	35.83
12	V-20330	34.05	32.99	34.56	38.49	31.96	29.89	31.63
13	V-19559	33.09	35.67	35.62	36.36	34.73	35.59	36.84
14	V-19317	36.60	35.54	35.31	33.64	30.36	34.03	33.58

Table 54: Effect of sowing dates on thousand grain weight (g)

(ii)-Test Weight (kg hl⁻¹)

Regarding test weight, HYT-100-76 & HYT-100-47 performed best in first two planting dates. Also HYT-100-47 maintained the vigor in D3 accompanied by V-19308. But in D4 the only winner was V-20337. HYT-100-74 along with V-19308 performed best when planted at 5th planting date i.e. 1st December. V-19308 maintained the strength till last planting date as well (table 55).

	Table 55. Effect of sowing dates on test weight (g)										
Sr. No.	Varity/Cultivar	D1	D2	D3	D4	D5	D6	D7			
1	Akbar-19	70.83	71.43	72.83	72.27	76.33	72.77	75.17			
2	Subhani-21	72.00	73.07	72.53	69.50	72.20	71.67	71.87			
3	Dilkash-21	70.87	73.00	75.17	73.57	73.30	71.10	71.73			
4	Arooj-22	72.50	72.50	76.27	75.27	75.23	74.00	73.93			
5	V-19347	74.07	75.67	74.63	74.07	75.53	73.97	73.73			
6	HYT-100-74	72.77	73.83	75.53	73.10	78.60	77.83	77.33			
7	V-19308	75.20	75.80	78.87	75.80	78.27	76.13	78.17			
8	HYT-100-76	75.13	77.77	77.93	73.20	75.83	73.33	72.33			
9	HYT-100-47	75.77	77.50	78.17	74.20	75.73	75.70	76.60			
10	V-20337	73.93	76.17	77.57	76.27	76.27	77.57	75.17			
11	V-19532	73.87	73.17	76.00	72.47	70.40	74.70	75.07			

Table 55: Effect of sowing dates on test weight (g)

12	V-20330	71.93	72.27	72.97	70.97	71.67	69.87	71.27
13	V-19559	70.33	72.67	75.17	72.83	72.30	74.60	73.23
14	V-19317	71.27	73.67	74.43	72.37	70.00	75.17	73.67
Avera	age	72.89	74.18	75.58	73.28	74.40	74.17	74.23

(iii)-Starch (%)

This year, there was a regular minor decreasing trend was observed in the values of starch percentage with respect to planting date but regarding cultivars, V-19347, V-19308, V-20337, HYT-100-76 & HYT-10047 gave best values in first three planting dates whereas Akbar-19, Subhani-21 & HYT- 100-74 accompanied them in D3. Akbar just like test weight showed the strength with delayed sowing (table 56).

Sr.	Varity/Cultivar	D1	D2	D3	D4	D5	D6	D7
No.	· ·							
1	Akbar-19	53.9	53.5	54.2	54.5	54.8	54.5	54.2
2	Subhani-21	53.1	53.7	55.0	52.5	53.6	54.2	54.0
3	Dilkash-21	53.3	53.3	53.9	53.4	54.2	53.6	53.5
4	Arooj-22	54.2	52.6	53.9	53.6	53.5	53.6	54.4
5	V-19347	54.2	54.1	54.8	54.1	53.4	53.8	53.2
6	HYT-100-74	53.2	52.7	54.3	54.1	53.5	53.9	53.5
7	V-19308	54.4	54.6	54.7	54.6	53.7	53.9	54.2
8	HYT-100-76	54.2	54.2	54.2	54.0	54.2	53.5	54.0
9	HYT-100-47	54.1	54.9	54.2	53.9	54.3	54.0	53.6
10	V-20337	54.6	54.2	54.8	53.6	53.7	53.8	54.2
11	V-19532	53.3	52.9	52.9	53.4	52.6	53.5	53.5
12	V-20330	53.6	52.9	53.4	53.6	53.5	53.3	53.4
13	V-19559	53.8	54.0	54.1	54.0	54.5	54.9	53.7
14	V-19317	53.5	53.7	53.9	53.9	53.2	54.1	53.4
Aver	age	53.8	53.7	54.2	53.8	53.8	53.9	53.8

Table 56: Effect of sowing dates on starch percentage

(iv)-Protein (%)

As far as protein percentage is concerned, a slight decrease was observed in first two planting dates but it remained in a constant range in other planting dates (table 57).

Sr. No.	Varity/ Cultivar	D1	D2	D3	D4	D5	D6	D7
1	Akbar-19	13.17	13.83	13.43	13.23	12.73	12.70	12.90
2	Subhani-21	14.93	14.33	12.97	14.90	14.23	13.80	13.90
3	Dilkash-21	14.37	14.23	13.87	14.43	13.93	14.00	14.00
4	Arooj-22	13.13	14.20	13.23	13.90	13.43	13.27	12.83
5	V-19347	13.60	13.60	13.17	13.80	14.37	14.40	14.50
6	HYT-100-74	14.30	15.43	14.27	14.67	14.87	15.07	15.10
7	V-19308	13.20	12.83	13.07	13.60	13.83	13.80	13.73
8	HYT-100-76	13.53	13.50	13.87	13.93	14.03	14.07	14.00
9	HYT-100-47	13.53	13.00	13.73	14.27	13.90	14.50	14.97

 Table 57: Effect of sowing dates on protein percentage

10	V-20337	13.20	14.13	13.30	14.37	14.43	14.60	13.97
11	V-19532	14.60	15.57	15.27	14.97	15.27	14.63	14.03
12	V-20330	14.27	15.60	14.63	14.90	14.97	15.00	14.97
13	V-19559	13.67	13.43	13.53	13.50	13.03	12.97	13.77
14	V-19317	13.93	13.80	13.33	14.20	14.37	13.83	14.43
Avera	ge	13.82	14.11	13.69	14.19	14.10	14.05	14.08

(v)-Gluten (%)

The trend of gluten percentage was much similar to that of protein (table 58).

a		D. Effect u	<u> </u>			· · · · · · · · · · · · · · · · · · ·		
Sr.	Varity/	D1	D2	D3	D4	D5	D6	D7
No.	Cultivar							
1	Akbar-19	23.3	25.0	23.7	23.3	21.0	20.3	21.3
2	Subhani-21	30.0	26.0	21.7	27.3	25.0	24.3	26.3
3	Dilkash-21	27.3	26.3	25.0	27.0	25.3	25.3	25.3
4	Arooj-22	22.7	24.0	20.7	22.7	20.7	20.3	20.7
5	V-19347	23.3	24.3	22.0	23.3	25.7	25.3	26.0
6	HYT-100-74	26.3	29.0	25.3	26.7	26.7	27.7	28.7
7	V-19308	23.3	21.3	22.0	24.3	24.0	24.0	25.0
8	HYT-100-76	23.7	23.0	23.3	24.7	25.0	25.0	25.7
9	HYT-100-47	23.0	21.3	23.7	23.7	23.7	24.7	28.0
10	V-20337	21.7	24.7	22.7	25.7	26.0	25.3	24.7
11	V-19532	27.0	29.7	27.3	28.3	29.0	25.7	25.3
12	V-20330	27.3	30.3	28.3	29.0	28.0	29.0	29.0
13	V-19559	25.0	23.7	24.0	23.3	22.3	22.3	25.3
14	V-19317	24.7	24.0	21.3	25.3	24.7	23.0	25.3
Avera	age	24.9	25.2	23.6	25.3	24.8	24.5	25.5

 Table 58: Effect of sowing dates on gluten percentage

(g)-Impact of tempering conditions on milling yield and rheology of flour

Three cultivars were chosen for this trial. All gave maximum milling yield at 15% moisture content on two duration i.e. 8 hours and 16 hours. Also there was no remarkable difference among all three cultivars. But the results were poor when grain was tempered for 24 hour (table 59).

	Conditions	Flour Yield (%)				
			Varieties/ Lines			
Time (Hours)	Moisture (%)	HYT-100-76	HYT-100-74	HYT-100-47		
8	14	66	67	68		
	15	71	73	72		
	16	67	67	68		
16	14	68	70	69		
	15	71	72	72		
	16	66	64	65		
24	14	67	68	68		
	15	65	63	65		
	16	64	64	65		

Table 59: Impact of tempering conditions on milling yield and rheology of flour

(h)-Preparation of chapatti & bread from aleuron flour

Three wheat cultivars were milled for separation of aleuron to make bread and chapatti to get functional benefits. Sensory evaluation revealed that score for chapatti was equal but Akbar-19 proved best for bread production (table 60).

Wheat Variety	Sedimentation value (ml)	Chapatti Quality (Score/100)	Bread Quality (Score/100)
HYT-100-76	28	73	60
HYT-100-74	28	72	61
HYT-100-47	27	74	61

 Table 60: Sensory evaluation of chapatti & bread from aleuron flour

Study of growth rate of key developmental stages of bread wheat advanced lines under changing climate conditions

Selected ten advanced lines of bread wheat were planted with three replications following randomized complete block design (RCBD) under two environments (late planting & normal planting under irrigated conditions) for experiment purpose. The growth rate of selected development stages as per Zadok's scale (zadoks et al., 1974; Tottman and Broad, 1987) were measured in relation to thermal time (Cd). The thermal time (heat units) was calculated by multiplying the number of days with average temperature prevailed during the days. The data of agronomic (at critical stage) and quality parameters were parameters was recorded (table 61 and 62).

Sr.#	Variety	H	MD	Tillering	H-D	Spike	Spikelets	No. of
		(cm)		(cm)	(cm)	length		grain/spike
1	Akbar-19	105.00	145.00	73.00	101.00	11.17	17.83	189.00
2	Arooj-22	102.67	145.33	78.33	104.00	9.50	16.83	172.00
3	Dilkash-	104.00	145.00	74.33	104.00	10.67	20.83	210.67
	21							
4	HYT-	102.50	142.67	62.17	102.00	11.17	17.67	192.33
	100-47							
5	HYT-	99.67	143.67	58.67	102.00	11.17	17.83	181.67
	100-74							
6	HYT-	104.50	143.00	72.67	102.67	11.50	19.67	183.33
	100-76							
7	Subhani-	99.83	147.00	76.83	108.00	9.67	18.33	202.33
	21							
8	V-19308	102.17	144.00	74.17	103.00	10.67	16.33	169.67
9	V-19317	108.33	145.00	66.67	103.67	12.83	17.83	219.33
10	V-19347	105.50	145.00	93.33	103.33	11.83	19.67	186.67

Table 61: Data of agronomic parameters

Note: H=Heigth, MD=Maturity Days, H-D=Heading days

Sr.#	Variety	1000 G.	Test Wt.	Protein	Moisture	Starch	Gluten	Zeleny
51.77	v al lety	Wt. (g)	(kg/hl)	(%)	(%)	(%)	(%)	Zeleny
1	Akbar-19	35.17	72.83	13.43	10.23	54.23	23.67	43.00
2	Arooj-22	39.83	76.27	13.23	10.43	53.90	20.67	44.33
3	Dilkash-21	37.44	75.17	13.87	10.03	53.93	25.00	51.67
4	HYT100-47	41.53	78.17	13.73	10.70	54.23	23.67	53.33
5	HYT100-74	40.41	76.53	14.27	10.17	54.30	25.33	49.67
6	HYT100-76	38.45	77.93	13.87	10.17	54.17	23.33	56.00
7	Subhani-21	28.37	72.53	12.97	10.37	54.97	21.67	43.00
8	V-19308	42.12	78.87	13.07	10.53	54.73	22.00	55.00
9	V-19317	35.31	74.43	13.33	10.53	53.87	21.33	50.33
10	V-19347	39.55	76.30	13.17	10.20	54.83	22.00	48.67

 Table 62: Data of quality parameters

PROJCTS

(1)- PARB Project # 904 (Nutrition enhancement of wheat crop) (a)-Crossing block and filial generations

One hundred wheat genotypes having high Zn (18-55 mg kg⁻¹) and Fe (22-141 mg kg⁻¹) contents were planted for evaluation, screening and hybridization. Fifty fresh crosses have been harvested. The filial generations (F₁-F₆) were sown and selected for desirable traits. Segregating materials were surrounded by the spreader rows of highly susceptible variety (Morocco). Modified bulk method was used for selection in F₂ & F₅. Entries studied and selected in different generations are given in the table 63.

Sr. No.	Generations	Entries Studied	Entries Selected
1	F_1	170	162
2	F_2	182	126
3	F ₃	107	76
2	F_4	37	25
5	F ₅	14	10
6	F ₆	336 (SHR)	74 (SHR)

Table 63: Details of filial generations

(b) Agronomic fortification

Trial with seven treatments of soil and foliar application of zinc and iron was sown for the biofortification. The wheat variety Anaj-2017 was used in this experiment. Different levels of zinc and iron was applied in soil and foliar application. Data on yield and yield parameters plant height (cm), spikelet per spike, spike length (cm), grain yield (kgha⁻¹), zinc and iron contents in grains (mg/kg) has been recorded.

Zinc and iron contents in grains were also measured accordingly. Seed samples were analyzed from Soil Bio-chemistry Section of Post-Harvest Research Center (PHRC) of AARI to estimate the Fe and Zn contents in the respected treatments.

- Maximum zinc (Zn) contents (49.24 mg kg⁻¹) were observed when 0.5% ZnSO₄ was applied as foliar.
- Maximum iron (Fe) contents (258.72 mg kg⁻¹) were observed when 1% FeSO₄ was applied as foliar.

These standardized doses of iron and zinc were disseminated to stakeholders through farmer's day and brochures.

(c)-Pasta Product Fortification

Pasta was one of the products used for the study and biscuits, which is equally a favourite snack but has a completely different cooking process, was used as the comparative product. These two products were fortified with Fe and Zn salts i.e., FeSO4, NaFeEDTA, ZnSO4 and ZnO, respectively. The doses incorporated were according to the RDA (Recommended Daily Allowance) of an individual, which is 10mg/day for zinc and 14mg/day for iron. The doses were set keeping into account the maximum limit of the two minerals for the human body, i.e., 45-50 mg/day was maximum limit for both salts. Considering the limited pattern of the study NaFeEDTA is a better iron fortificants, ZnO and ZnSO4 were almost at par with similar results, use of fortificants in biscuits were more substantial as compared to in pasta (which can be a lead to further study), combination of different mineral fortificants/salts can be considered for desirable results.

(2)- PARB Project # 770 (Development and dissemination of rice and wheat varieties suitable for irrigated rice-wheat cropping system in the climate change scenario)

(a)-Filial generations (F₀, F₁, F₅, F₇)

Fifty single (F_0 generation) crosses were attempted, out of which 50 single crosses were harvested. F_1 generation was sown in irrigated condition so that sufficient seed may be produced. F_5 and F_7 generations were sown in waterlogging conditions at RRI, KSK. Entries/plants exhibiting waterlogging tolerance, desirable plant height and diseases resistance were selected using selected bulk. Fifty-two F_{1s} were sown on 10-11-22 at WRI-FSD and F_5 and F_7 generations were sown on 29-11-22 at RRI, KSK and fertilized @120:90:60 N: P: K kg ha⁻¹ at sowing time. Plot size of F_5 and F_7 was 1.8 m x 6 m. 50, 52, 17 and 102 entries from (F_0 , F_1 , F_5 , and F_7) were selected, respectively (table 64).

Generations	Entries studied	Entries selected
F ₀	50	50
Fı	52	41
F ₅	17 SHB	15 SHB
F ₇	102	54

 Table 64: Detail of filial generations for waterlogging tolerance

SHB= Single Head Bulk,

(b)-A-Trial (Irrigated)

In A-I 14 advanced lines (out of 54) and A-II 10 advanced lines (out of 22) were found high yielding than all the check varieties (Akbar-19 & Subhani-21) under irrigated conditions (table 65).

A-Trial (I	rrigated)	Akber-19	Arooj-22
		2950	3220
Variety Code	Yield	Percentage	increase over
	(Kg ha^{-1})	check variet	ties
V-22032	3514	19.11	9.13
V-22036	3490	18.30	8.39
V-22049	3450	16.94	7.14
V-22058	3452	17.01	7.20
V-22059	3420	15.93	6.21
V-22060	4160	41.01	29.19
V-22062	3592	21.76	11.55
V-22063	3440	16.61	6.83
V-22067	3543	20.10	10.03
V-22068	3450	16.94	7.14
V-22069	3410	15.59	5.90
V-22073	3420	15.93	6.21
V-22074	3480	17.97	8.07
V-22081	3480	17.97	8.07
V-22087	3830	29.83	18.94
V-22088	3826	29.69	18.81
V-22089	3913	32.64	21.52
V-22090	3501	18.68	8.73
V-22095	3549	20.31	10.22
V-22099	3925	33.05	21.89
V-22100	3888	31.79	20.75
V-22104	3913	32.64	21.52
V-22105	3962	34.31	23.04
V-22106	3551	20.37	10.28
LSD(0.05) = 1	41.53, CV (%)	= 4.16	

Table 65: High yielding advanced lines in A-trials

(c)-Regular Yield Trial (B-Trial)

In regular yield trials under waterlogging conditions, thirty-eight entries were tested following alpha lattice design with two replications and with two check varieties i.e. Akbar-19 and Arooj-22 in RRI-KSK, WRI-FSD and SSRI Pindi Bhuttian in regular yield (B-trial) trial. Nine (09) selected best entries in all the regular yield trials on the basis of yield potential and rust resistance (table 66).

Table 66: Regular yield trials (2022-23)

Sr. No	Variety Code	Parentage/Pedigree	Yield (kg ha ⁻¹)	Disease Reaction 2022-23	
			Irrigated	LR	YR
1	V-21002	AQUAB/GA-2002 PB14001-0A-0A-0A -26A-0A	3974	10MS	0
2	V-21008	AQUAB /6/ PFAU/SERI.1B//AMAD/3/ WAXWING/4/AKURI/5/PFAU/ SERI.1B// AMAD/3/WAXWING PB14007-OA-OA-OA-16A-OA	3614	10MS	0

3	V-21013	BABAX/3/FASAN/Y//KAUZ/4/BABAX/5/LU 26/ HD2179/6/NR 388 PB14092-OA-OA-0A -1A-0A	3768	5MS	0
4	V-21033	CROC_1/AE.SQ444/3/T.DOCOCCON T194625 AE.SQ (372)//3*PASTOR/4/ T.DICOCCON/5/NR 384(Lr37/Yr17/Sr38) PB14154-OA-OA-OA-20A-OA	3691	5MS	0
5	V-21035	FRET2/WBLLI//TACUPETO F2001*2 /3/T.DICOCCON P194624/AE.SQ.(409)// BCN /4/NR 395(Lr19/Sr2) PB14151-OA-OA-0A -34A-0A	3501	10MS	5MS
6	V-21038	WATAN/2*ERA/6/BAV92//IRENA/KAUZ/3/HUI TES/4/GONDO/TNMU/5/BAV92//IRENA/KAUZ/ 3/HUITES PB13013-1A-0A-0A-16A-0A	3975	0	0
Chec	Check Arooj-22 3382 5MS		5MS	0	
LSD	(0.05) = 116.6	2, CV (%) = 3.06			

(3)-PARB Project No. 734 (Improving yield, drought and salinity tolerance in wheat through GA-sensitive dwarfing gene system)

(a) Yield Trials at Ten Different Locations of Punjab

Nursery of 43 selected genotypes/lines with 07 current cultivars (MH-21, Akbar-2019, Dilkash, Subhani, FSD-2008, Fakhr-e-Bhakhar, Pak-13) was established at 10 different locations of Punjab including irrigated, barani and salt affected areas during the crop year 2022-23. Total 50 entries with 2 replications were sown following alpha lattice design. Four trials were sown in irrigated areas in following research stations: (1) Wheat Research Institute, Faisalabad (2) Muhammad Nawaz Sharif University of Agriculture, Multan, C-Block (3) Rice Research Institute, Kalashakaku (4) Punjab Seed Corporation, Khanewal. Three trials were sown under drought conditions two in barani areas including (1) Barani Agriculture Research Institute, Chakwal (2) Barani Agriculture Research Station, Fateh Jhang and one under drought condition at WRI, FSD. Three trials were planted in salt affected areas at (1) MNSUAM Jalalpur Pirwala Campus Reaearch Farm, Jalalpur (2) Soil Salinity Research Institutes, Pindibhatian (3) Regional Agricultural Research Institute, Bahawalpur.

(b) Phenotyping

Phenotyping of each trial was done by measuring morphological and yield contributing traits at their appropriate time. Morphological traits related to plant architecture like plant height, peduncle length, internodal length and spike length were measured. Harvesting and threshing of each trial was completed and yield per plot was recorded in kg/ha. Variations in the measured values of various traits are as under:

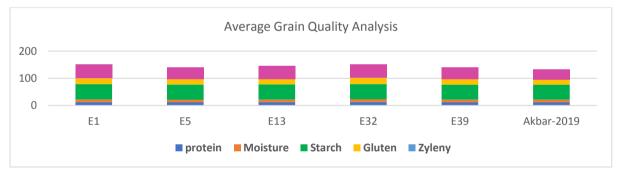
- Reduced plant height was 44.38 cm and the tallest plant was 125.72 cm height.
- Minimum value of peduncle length was 22.76 cm and maximum peduncle length was recorded 55.78 cm
- Internodal lengths were ranged between 7.12 cm to 23.45.88 cm.
- Maximum length of spike was 13.65 cm and minimum length was of 8.38 cm
- Highest average yield recorded was 4911.65 kg/ha and minimum yield was 3087.69 kg ha⁻¹.

Best performing wheat lines were identified on the basis of reduced height, high yielding drought and salinity tolerance and having alternate dwarfing genes. From 43 genotypes five best genotypes (E1, E5, E13, E32, E39) were selected by comparing the mean values that have optimum reduced height and better performance over all the locations including irrigated, barani and salt affected areas. These genotypes were having greater yield (> 3348 kg/ha) than the check varieties Akbar-2019, Subhani, Pak-13, MH-21, Dilkash, FSD-2008 and Fakhr-e-Bhakhar. Among three environmental conditions, in irrigated areas average yield was higher than the barani and salt effected areas where E32 was best among all fifty genotypes having average yield 5314 kg/ha on all the four locations of irrigated areas. Genotypes E19 and E27 showed excellence performance along with all above mentioned genotypes producing 4874 and 4754 kg/ha than the check variety Akbar (4714 kg ha⁻¹). Both these genotypes have Rht 5 and Rht 13B GA responsive dwarfing genes. Minimum recorded yield in irrigated areas during 2022-23 was 3592 kg ha⁻¹ of the E23. In Barani Areas due to less precipitation at the time of sowing germination was poor and average performance of all genotypes were poor than in irrigated areas. While the promising performance of E5 was observed under barani condition at all the three locations (FSD Barani, Fateh Jhangh and Chakwal producing 3062 kg ha⁻¹ than best check variety Akbar 2019 (2353 kg ha⁻¹). Along with top five varieties that surpassed most of check varieties E2 and E31 also showed better performance in barani areas giving 2464 and 2421 kg ha⁻¹ respectively.

During experimental years 2022-23 mostly genotypes did not confer any sign of yellow and leaf rust as the rust is an airborne disease that required specific conditions of humidity and temperature for its development except at the location of Fateh Jhang where yellow rust was observed (20M to 100 S). Morphological and yield traits of the five selected best lines is given in table 66 in which performance of all genotypes was poor than in irrigated areas. While the promising performance of E5 was observed under barani condition at all the three locations (FSD Barani, Fateh Jhang and Chakwal producing 3062 kg/ha than best check variety Akbar 2019 (2353 kg ha⁻¹). Along with top five varieties that surpassed most of check varieties E2 and E31 also showed better performance in barani areas (table 67).

Genotype	Plant	Peduncle	Spike	1000	Grain	Dwarfing	YR
	Height	Length	Length	grain wt	Yield	gene	
	(cm)	(cm)	(cm)	(g)	(kgha ⁻¹)		
E1	92.07	42.38	12.41	40.22	3595	Rht1, Rht18	20M
E5	99.45	39.68	12.2	46.92	3348	Rht 1	20MSS
E13	96.62	35.79	11.81	37.06	3416	-	20MSS
E32	95.37	35.785	11.2	34.29	3456	Rht5	20MSS
E39	90.72	37.8275	10.95	36.31	3616	-	20M
Akbar-19	92.5	34.82	11.57	39.32	3859	-	20M

Table 67: Morphological and yield contributing traits of selected genotypes


Crop Stand of five best genotypes

(c) Quality Analysis

Grain quality analysis for the protein contents, moisture%, gluten, starch, alpha amylase, ash and zeleny of best wheat genotypes were determined using grain analyzer in the cereal technology lab of the Wheat Research Institute, Faisalabad of the 05 best selected lines. Ranging values of each parameter is given as under:

- Protein contents varies between 9.7 to 16.3% of maximum and minimum value respectively.
- Values of moisture percentage ranges from 9.3 to 10.2 %.
- Maximum value of starch contents recorded was 57.4% and minimum value was 46.2%.
- Higher percent value of gluten content was recorded 43% and minimum value was 13%.
- Zeleny varies between 32 to 82
- Falling No. ranged between 300 s to 508 s

Exposure to salt and drought stress led to a significant increase in grain protein content, wet and dry gluten contents. However, these stress conditions also resulted in a significant reduction in traits such as thousand-grain weight, grain protein yield, and test weight. During 2022-23 wheat growing season crop stand was not good in barani areas and the accumulation of protein and other grains quality parameters was badly affected and average protein contents were lower than irrigated areas. Similarly, in salt effected areas protein Contents was lower as compared in irrigated areas. All the five best varieties were as similar in grain quality parameters as the current cultivated variety Akbar-2019.

Average Grain Quality Contents presence at different location of Punjab

PUBLICATIONS

- 1. Abdullah M, Zulkifal M, Tufail T, Akbar FH, Owais, M, Ahmed J, Javed A, Tabassum MI, Kanwal A, Asghar M, Musa M, Arif MAR, Hameed A and Haider I (2023). Added value upshot of barley amalgamation in wheat four to boost the physico-chemical quality attributes of fat bread. Cereal Research Communications.1-9.
- 2. Abdullah M, Tufail T, Hussain M, Nadeem M, Owais M, Zulkiffal M, Tanveer MH and Jbawi E Al (2022). Effect of sprouted barley flour on the quality wheat of bread, biscuits and cakes. Cogent Food & Agric. 8: 2122272.
- Ahmad J, Rehman A, Ahmad N, Anwar J, Nadeem M, Owais M, Abdullah M, Gulnaz S, Ramzan Y, Shair H, Saleem M, Shahzad R. Dilkash-20: A newly approved wheat variety recommended for Punjab, Pakistan, with supreme yielding potential and disease resistance 2023. SABRAO J. Breed. Genet. 55(2): 298-308.

- 4. Ahmad N, Rehman A, Gulnaz S, Javed A, Sultana R, Ajmal S, Ahsan A, Shamim S, Nadeem M, Shair H, Abdullah M, Ahmad J, Sarwar M. 2023. Appraisal of bread wheat germplasm for quality attributes and their relationship with grain yield. SABRAO J. Breed. Genet. 55(2): 388-398.
- Ahmad N, Javed A, Gohar S, Ahmed J, Sher A, Abdullah M, Asghar S, Javed K, Iqbal J, Kumar S, Qayyum A. 2022. Estimation of drought effects on different bread wheat genotypes using morpho-physiological traits. Biochemical Systematics and Ecology. 2022 Oct 1; 104:104483.
- 6. Ahmad J, Tabassum MI, Owais M, Riaz M, Nadeem M, Abdullah M, Shair H, Gulnaz S, Ghafoor I, Javed A and Mahmood A. 2022. Talbina-21: Pakistan's first hull-less, high yielding and lodging tolerant barley variety. Pl. Cell Biotech. Mol. Bio. 23(29-30): 1-9.
- 7. Ahmad R, Tabassum MI, Abdullah, Sarwar M, Tanvir MH, Abdullah M, Ghafoor I, Makhdoom, M., and J. Ahmad. 2022. JAU-17: A first high yielding malting barley variety suitable for marginal lands of Punjab. JAR. 60(1):11-16.
- 8. Ahmad NA, Javed S, Gohar J, Ahmed A, Sher M, Abdullah S, Asghar K, Javed J, Iqbal S, Kumar A, Qayyum. 2022. Estimation of drought effects on different bread wheat genotypes using morpho-physiological traits. Biochem. Sys. Eco.104: 104483.
- 9. Ahmad B, Ahmed R, Younas MT, Saeed M, Masroor S, Wahab A, Hayder B, Subhani M, Abbas M, Tariq S, Mahmood B. 2022. Effect of automated controlling system using raspberry-Pi microprocessor on growth parameters of eggplant in green house. Pak. J. Biotech. 19(2): 25-30.
- Afzal A, Syed S, Saeed M, Sultan R, Kanwal M, Shahid M, Zahid M, Mahmood B. 2022. Breeding wheat for rust resistance: conventional and modern approaches. Pl. Protect. 6(3): 1-8.
- 11. Akhter MS, Noreen S, Mehmood S, Aqeel M, Zafar ZU, Rashid M, Arshad MN, Owais M, Ahmad J and KH Shah. 2023. Silicon supplement improve growth and yield under salt stress by modulating ionic homeostasis and some physiological indices in Hordeum vulgare L. J soil Sci. Pl Nutr. https://doi.org/10.1007/s42729-023-01240-4
- 12. Anjum N, Muhammad A, Malik FSN, Zulfiqar B, Rafique R, Shah MH, Javed A, Asif M, Ahmad S, Ayub CM, Iqbal Z, Azam M, MA, Iqbal. 2022. Yield and quality assessment of grapevine cultivar Sultnina at different geographic locations of Punjab, Pakistan. Int. J. Agr. Ext. 10 (1):125-133.
- 13. Ashraf A, Ahmad N, Shahid M, Zahra T, Ali Z, Hassan A, Awan A, Batool S, Raza MA, Irfan U, Maqsood M, Makhdoom M and MN Khalid (2022). Effect of different media compositions of 2,4-D, Dicamba and Picloram on callus induction in Wheat (*Triticum aestivum* L). Biol. Clin. Sci. Res. J., 2022: 259
- 14. Asghar S, Rahman A, Ahmad, N, Ajmal S S. Ahsan AS, Gulnaz SS, Javed M, Iqbal J, Bibi S, Fiaz S, Elesawy B, Eskary A, Ismail KA, Gharib AF, Din AM, Tabassum MI and A. Qayyum. 2022. Evaluation of Pakistani wheat germplasm for leaf rust resistance at various locations. PloS ONE 17(5):e0266695.
- 15. Abar MH, Sarwar G, Khan A, Hameed A, Mahmood K, Tauseef M, Anwar SA, Muhammad T, Javed MH, Akhtar B, Rauf S, Ashiq M, Jamil M, Abdullah M, Mahmood A., Shah, MT., Ullah, M., Faooq, J., Rizwan, M., Abbas, HG and M. I. Tabassum. 2022. Bio-efficacy of PB-rob (L) as mating disruptant against pink boll worm, *Pectinophora gossypiella* (Saunders) in cotton. Pl Cell Biotech and Mol Biol. 23(23&24):33-42.
- Asma S, Fayyaz AM, Majeed K, Rehman A, Ali S, Liu J, Rasheed A, Y. Wang. 2022. Genetic variability and aggressiveness of *Tillecia indica* isolates causing Kernal Bunt in wheat. J. Fungi. 8(3):219.

- 17. Bashir H, Jamil MW, Shah SAH, Tabassum MI, Bibi F, Akhtar S, Mahmood K, Shahzad N, Khaliq A, Sher R, Shamim S, Riaz M, Majeed T and S. Shaukat (2022). Correlation studies of yield components and grain quality of *Oryza sativa* under drought stress. Biosci. Res. 19(4):1801-1808.
- 18. Ghani A, Yousaf M I, Hussain K, Hussain S, Razaq A, Akhtar N, Ibrar I, Kamal N, Ali B, Khan AM, Shah SWH, Khanum S, Hassan RM.2023. Relationship between high-temperature stress and key physio-chemical, reactive oxygen species and antioxidants in spring maize hybrids under semi-arid conditions. Biological and Clinical Sci. Res. J. 4 (1): 199.
- 19. Hanif S, Shakoor A, Saleem MF, Saleem MF, Ali S, Ashraf MA, Nadeem M, <u>Shair</u> H, Haq A, Khan RAH and MA. Amin. 2022. Exogenous application of proline to enhance rice tolerance against heat and drought stresses. Pak. J. Agric. Res. 35(2): 324-333.
- 20. Iqbal J, Ahmad N, Tabassum MI, Rabbani G, Hassan F, Rafique M, Iqbal M, Mustafa R, Ashraf S, Javed A and Abdullah S. 2022. MA-21: A disease tolerant and long-rooted wheat variety depicting long-stay in the rainfed regime. J. Agric. Res. 60(2): 107-113.
- 21. Javed A, Ahmad N, Ahmed J, Hameed A, Ashraf MA, Zafar SA, Maqbool A, Al-Amrah, H, Alatawi HA, Al-Harbi MS and Ali EF. 2022. Grain yield, chlorophyll and protein contents of elite wheat genotypes under drought stress. J. King Saud Univ.Sci. 34(7): p.102279.
- 22. Javed A, Nawab NN, Gohar S, Akram A, Javed K, Sarwar M, Tabassum MI, Ahmad N, Mallhi AR. 2022. Genetic analysis and heterotic studies in tomato (*Solanum lycopersicum* L.) hybrids for fruit yield and its related traits. SABRAO J. Breed. Genet. 54(3): 492-501.
- 23. Javaid MM, Ahmad N, Javed A, Makhdoom, M, Saleem M, Owais M, Nadeem M, Rahman S, Mehboob S, Naz S, Rehman A, Ahmed J, Tanveer MH. 2022. Monitoring and detection of wheat blast disease caused by *Magnaporthe oryzae Triticum* pathotype in Punjab, Pakistan. SABRAO J. Breed. Genet. 54(5): 1004-1015.
- 24. J. Iqbal, Nadeem Ahmad, M.I. Tabassum, G. Rabbani, F.Hassan, M. Rafique, M.Iqbal, R. Mustafa, S.Ashraf, A. Javed and S. Abdullah.2022. MA-21: a disease tolerant with long-rooted wheat variety depicting long-stay in the rainfed regime. J. Agric. Res., 60(2):107-113.
- 25. Javed A, Ahmad N, Ahmed J, Hameed A, Ashraf A, Zafar SA, Maqbool A, Al-Amrah H, Alatawi HA, Al-Harbi MS. and Ali EF. 2022. Grain yield, chlorophyll and protein contents of elite wheat genotypes under drought stress. J. King Saud Univ Sci.:102279.
- 26. Khalid A, Hameed A, Shamim S and Ahmad J. 2022. Divergence in single kernel characteristics and grain nutritional profiles of wheat genetic resource and association among traits. Front. Nutr. 8:805446.
- 27. Kanwal A, Makhdoom M, Ghafoor I, Ali Z, Zulkiffal M, Abdullah M, Ajmal S, Ahmad J, Tariq M, Bakhsh A, Sarwar M, and A. Rehman. 2022. Grain magnitude upshots by different genetic parameters and molecular strategies in wheat. J. Agric. Res, 60(2):89-100.
- 28. Kanwal, S., Jamil, S., Afza, N., Ghafoor, I., Shehzadi, M., Kanwal, R. and Iqbal, M.Z., 2022. Drought tolerance in rice and role of wrky genes. J. Ani. Pl. Sci. 32(3): 615-630.
- 29. Kamal N, Saeeda Khanum, Muhammad Siddique, Muhammad Saeed, Muhammad Farooq Ahmed, Muhammad Tanveer Ahmed Kalyar, Shafiq-Ur-Rehman, Basharat Mahmood.2023. Heterosis and Combining Ability Studies in A 5 x 5 Diallel Crosses of Maize Inbred Lines. J. App. Res. Pl. Sci. 4(1): 419-424.
- 30. Khan RT, Ilyas R, Kamal N, Saleem S, Bibi S, Khan MR, Younas MT, Rehman HM, Ullah S and Mahmood B. 2022. Effects of Different Hormonal Concentrations on In vitro Regeneration and Multiplication of Pearl Millet (*Pennisetum glaucum* L.). J. Appl. Res. Pl. Sci. 3(2): 311-316.
- 31. Riaz M, Tabassum MI, Abdullah, Sarwar M. Tanveer MH, Abdullah M, Ghafoor I, Makhdoom M and J. Ahmad (2022). Jau-17: A first high yielding malting barley variety suitable for marginal lands of Punjab. J. Agric. Res., 60: 01

- 32. Rahoo AM, Rahoo RK, Saeed M, Burhan M, Keerio N. 2022. Molecular identification and growth of *Xenorhabdus* and *Photorhabdus* symbionts of entomopathogenic nematodes. Pl. Protect. 6(2): 20-26.
- 33. Saeed M, Jamil Z, Shehzad T, Hasan SZ, Bibi R, Malik SN, Rehman HM and Ahmed R. 2023. Role of Next Generation Sequencing (NGS) in Plant Disease Management: A Review. J. App. Res. Pl. Sci. 4(1): 512-517.
- 34. Siddique M, Khanum S, Kamal N, Khan AH, Hayat S, Raza S, Kohli SA, Bhatti MH, Ghani A, Saleem Z and Ahmad R. 2022. Heterosis and combining ability studies in pearl millet. Pak. J. Biotech. 19(2): 84-88.
- 35. Saeed MS, Kaukab S, Rehman A, A. Amin. 2022. Chronological levels for selection and development of disease resistance, climate resilient and high yielding lentil cultivar for food security. Pl cell biotech and mol. Bio. 23(23 & 24): 6-21.
- 36. Sultan R, U. Hanif and M. Saeed. 2022. Estimation of salt tolerance potential of Synthetic Hexaploid Wheat based on Ion Discrimination. Pl. cell Biotech and Mol Bio. 23(25-26):1-8.
- 37. Usman M, Habib H, Satish M, Iqbal S, Altaf J, Rehman A, Khan AI, Kashif, Z, and FS Awan. 2022. Genomic characterization of *Puccinia triticinia* using molecular marker. Brazilian J of Bio. (84): e249472.
- 38. Zulkiffal M, Ahmed J, Riaz M, Ramzan Y, Ahsan A, Kanwal A, Ghafoor I, Nadeem M, Abdullah M. 2022. Response of heat-stress tolerant and susceptible wheat lines in diverse planting environments by using parametric stability models. SABRAO J. Breed. Genet. 54(1): 127-140.
- 39. Zulkiffal M, J. Ahmed, M. Owais, N. Ahmed, A. Ahsan, A. Rehman, J. Anwar, M. Riaz, Y. Ramzan, Musa, M. and M. Nadeem. 2022. Disclosure of stress driver's traits related to reliability in normal, drought and heat prone settings in bread wheat advanced lines. Bulg. J. Agric. Sci., 28 (3): 488-493.

CAPACITY BUILDING

July, 2022

- Three officers attended online training entitled 'Mendeley reference software' arranged by AARI, Faisalabad and Pakistan Scientific and technological information Centre, Faisalabad.
- One officer attended online seminar entitled "Challenges and research opportunities in oil palm tissue culture" arranged by ORI, Faisalabad.

August, 2022

- Six officers attended online training program entitled
- 'Biofortification- A gender inclusive nutrition strategy for commercialization of biofortified crops" arranged by GRAIN, Harvest plus, Islamabad.
- Two officer attended online seminar on biofortification of staple crops to combat mineral malnutrition" organized by Department of Agronomy, Faisalabad.

September 2022

- Seven officers attended conference entitled "International wheat conference at University of Agriculture, Faisalabad.
- One officer virtually attended webinar entitled "Roots of second green revolution and oil palm and palm oil arranged by bioingene.com
- Ten officer attended seminar entitled "Soybean cultivation to ensure food security" arranged by ORI, Faisalabad.

October, 2022

- Ten officers attended seminar entitled "Crop diversification through sesme cultivation and quality production" arranged by ORI, Faisalabad
- Eight officers attended on line workshop entitled "The Borlaug initiative" arranged by CIMMYT, Mexico and Cornell University, USA.
- Two officer attended online webinar entitled "climate resilient rice using biodiverse resources" arranged by bioingene.com

November 2022

• Two officers attended on line seminar on publication ethics arranged by Taylor and Francis group, Boston, USA.

December 2022

- Three officers completed four weeks mandatory training entitled "Finance, Administration and Management" at University of Agriculture, Faisalabad.
- One officer online attended webinar entitled "genetics, genomics and breeding of tree bamboos: emerging prospectus and future challenges" arranged by Bioingene.com during this month.

January 2023

• Six officers attended two days training entitled "next generation wheat workshop" at NARC, Islamabad.

February 2023

• Ten officers attended one day workshop entitled "standardization of brassica and sunflower seed production" at main library AARI, Faisalabad

March 2023

• Nil

May 2023

- Three officers attended two days seminar entitled "wheat brain storming session" at NARC, Islamabad.
- Ten officers participated in one day seminar entitled "Potash-for sustainable crop production and food security" at AARI, Faisalabad.
- One officer attended online seminar entitle 'the potential of genome editing for sustainable agriculture' arranged by bioingene.com

June 2023

- Fifteen officers attended training program entitled 'DNA fingerprinting of crops under plant breeder's rights rules' arranged by ABRI, AARI, Faisalabad.
- One officer attended online training entitled "introduction to organic agriculture" arranged by technical education and skill development authority, Philippine.

INTERNSHIP PROGRAM

About 100 students from University of Agriculture, Faisalabad, GC Women University, Madina Town, Faisalabad and GC University, Faisalabad completed their BSc (Hons) internship under the supervision of WRI scientists.

MISCELLANEOUS

i- Wheat rust surveillance

Wheat rust surveillance was conducted to observe rust existence and wheat crop condition. The activity was conducted in 145 different locations in twenty districts of Punjab.

ii- Travelling wheat seminar

Travelling wheat seminar with concluding session was conducted at Wheat Research Institute, Faisalabad.

iii- Chief Minister wheat yield competition program

Participated in Chief Minister wheat yield competition program in collaboration with Agri. (Ext) and crop reporting departments, Faisalabad for the year 2022-23.

iv- Pictorial view

