Government of the Punjab Agriculture Department

1

SUGARCANE RESEARCH

ANNUAL REPORT (2019-20)

Sugarcane Research Institute, AARI, Faisalabad

TABLE OF CONTENTS

Sr. #.	Contents	Page					
1.	INTRODUCTION	3					
2.	OBJECTIVES	4					
3.	BUDGET	5					
4.	RESEARCH AREA	5					
5.	RESEARCH STAFF	6					
DET	DETAIL OF RESEARCH EXPERIMENTS						
-	SUGARCANE BREEDING	7					
-	SUGARCANE AGRONOMY	38					
-	SUGARCANE PATHOLOGY	50					
-	SUGARCANE ENTOMOLOGY	61					
_	SUGARCANE TECHNOLOGY	70					
-	SUGARCANE RESEARCH STATION, KHANPUR	76					
-	ABRIDGED REPORT 2019-20						

INTRODUCTION

Sugarcane (*Saccharum officinarum*) is an important cash crop of the Punjab province. It belongs to the family Poaceae and native of temperate humid to tropical regions of Asia. All sugarcane species interbreed and the major commercial cultivars are complex hybrids and products like table sugar, molasses and ethanol are directly obtained from sugarcane. The bagasse that remains after sugar cane crushing is burnt to provide heat and electricity. It is also utilized as raw material for paper, chipboard, and utensils, because of its high cellulose content. The sugarcane tops serve as fodder during scarcity of fodder period. The grower's economy and viability of sugar industry is based on this crop. Sugarcane crop plays a pivotal role in our domestic economy next to cotton as a cash crop. It has 0.7% share in Gross Domestic Product (GDP) in 2018-19 In Punjab; during 2018-19, Sugarcane was planted on an area of 710 thousand hectare having production of 44.90 million tones with an average cane yield of 68.51 t/ha, showed a decrease of 17.24 % in cultivated area with decrease of 18.45% in production over the last year.

The Sugarcane Research Station was established in 1934, in Lyallpur. Later on, this section was upgraded as Sugarcane Research Institute; Faisalabad in 1978. The Research work was focused on the main objectives of the evolution of high cane and sugar yielding, disease and insect pest's resistant varieties besides, the development of improved production technology.

The Annual Research Program is prepared to develop the research strategy for the coming crop year. The Research Program includes 42 experiments on various disciplines including Sugarcane Breeding (11), Agronomy (11), Pathology (9), Entomology (6) and Technology (5) in the current research year. The Sugarcane Breeding components includes collection of fuzz and cultivars, raising of seedlings, selection of seedlings, screening and selection of clones at various selection stages and varietal adaptability under different soil and climatic conditions. The research program work also includes cane flowering at Research Sub Station, Pail & Charrapani, Murree. The Annual Program of Research Work for 2018-19 at Khanpur Station includes 08 experiments.

OBJECTIVES

<u>General</u>

- Evolution of widely adaptable varieties having desired economic characters.
- To develop package of production technology for optimum cane and sugar yield.
- To evaluate varieties for higher sugar contents.

Specific

- * To produce clones having desired parental characters and to raise seedlings for selection of elite clones.
- * To evolve varieties having high yield and quality potential for different soil and climatic conditions.
- To evolve varieties resistant to insect pests, diseases, lodging, drought, frost and soil hazards.
- * To determine optimum planting and harvesting schedule of varieties to obtain maximum cane and sugar yield.
- To develop package of production technology to improve cane and sugar yield from plant and ratoon crop.
- * To find out most economical fertilizer doses for optimum yield.
- To develop technology to minimize sugar losses during harvesting and processing of cane.

The research work pertaining to varietal evolution program consists of various selection stages from growing of seedlings from the cane fuzz collected from different sources to the final stage of selection. The promising clones are tested in different phases of selection i.e. seedling, nursery, semi-final and final varietal trials. The promising cultivars are further tested under different agro-ecological zones of the Punjab for their adaptability.

The variety development program is based mainly on the imported germ plasm including fuzz and cultivars from Sri Lanka, Mauritius, West Indies, South Africa, canal Point (Florida) USA, Australia and local sources include the collection of open pollinated cane fuzz from Murree.

The work on wider row planting is being concluded and will be an adoptable system for cane mechanization in the province. Studies on irrigation x fertilizer interaction with cane varieties are also important feature of research plan. The work is being carried out on ratoon yield improvement besides the varietal behavior of ratooning. In variety selection work, main emphasis is laid on disease resistance/tolerance. The studies have helped to give information on reaction of promising lines to various insects. Identified new strains of Red Rot and evaluated resistant lines/clones against the strains.

The low sugar recovery and cane yields of the province can be improved with the introduction of high quality new germ-plasm and advance production technology.

BUDGET 2018-19

Budget allocation under different heads.

Object Classification	Budget Allocation (Rs.)	Total Expenditure (Rs.)
A01101-Pay of officers	2,15,93,704	2,16,27,242
A01151-Pay of other staff	1,55,53,551	1,55,02,567
A01201-Regular allowance	3,04,41,991	2,97,02,158
A01202-Other allowance	8,76,300	8,75,951
A03-Operational expenses	1,49,87,176	1,46,80,421
Total:	83,452,722	8,23,88,339

RESEARCH AREA

Sr.	Name of				Area	Patta	adar Area	Encroached
No.	Institute/ Station	Total Area	Cultivated Area	Direct Area	under Roads & Buildings	Legal	Illegal	by other than Pattadar
		Acres	Acres	Acres	Acres	Acres	Acres	Acres
1.	Sugarcane Research Institute, Faisalabad.	111.7	97.2	111.7	14.5	-	-	0.57
2.	Sugarcane Research Station, Khanpur.	46.1	39.1	46.1	5.50	-	-	1.50
3.	Sugarcane Research Station, Murree	4.75	1.30	4.75 (Area on lease)	-	-	-	-
4	Sugarcane Research Station, Sargodha	8.5	5.625	8.5	2.875	-	-	-
5	Sugarcane Research Station, Jhumra.	401.9	-	401.9	-	Area is saline, water logged and unlevelled		ogged and
	TOTAL	572.95	143.225	572.95	22.875	-	-	2.07

RESEARCH STAFF

- 1. Dr. Naeem Ahmad, Director
- 2. Dr. Arshad Mahmood, Sugarcane Specialist
- 3. Mr. Hafiz Muhammad Walayat Ali Khan, Sugarcane Virologist,
- 4. Mr. M. Ashfaq Nadeem, Sugarcane Agronomist
- 5. Dr. Muhammad Yasin, Assistant Agronomist
- 6. Mr. Zaheer Sikandar, Assistant Entomologist
- 7. Mr. Muhammad Younis, Assistant Botanist (Taxonomy)
- 8. Dr. Ramooza Rafique Asstt. Agri. Chemist (DGR)
- 9. Dr. Abdul Majeed, Asstt. Agri. Chemist
- 10. Dr. Hafiz Bashir Ahmad, Assistant Botanist (Genetics)
- 11. Dr. Muhammad Azhar Munir, Assistant Research Officer
- 12. Mr. M. Akhlaq Mudassir, Assistant Research Officer (Study Leave)
- 13. Mr. Naeem Fiaz, Assistant Research Officer (Study Leave)
- 14. Dr. Mahmood-ul-Hussan, Assistant Research Officer
- 15. Dr. Mubashra Yasin, Assistant Research Officer
- 16. Ms. Salma Niaz, Assistant Research Officer
- 17. Dr. Wardah Muzaffar, Assistant Research Officer
- 18. Mr. Muhammad Shahzad Afzal, Assistant Research Officer
- 19. Dr. Imran Rashid, Assistant Research Officer
- 20. Mr. Muhammad Aslam, Assistant Research Officer (Khanpur)
- 21. Mr. Muhammad Farooq Ahmad, Assistant Research Officer (Murree)

ANNUAL RESEARCH REPORT FOR THE YEAR 2019-2020 1. SUGARCANE BREEDING

Breeding Material

Normally sowing is practiced in the end of March for flowering purposes. For 2019-20, a total of 175 breeding lines (from plant crop 2019 and first ration crop) were available for flowering studies at the start of the flowering season 2019-20. Flowering season at SBSS, Murree starts from November and continue to June or even to July as in 2019.

Rodents/Insect Attacks at SBSS (Murree)

Shoot borer attack was observed for the first time at this sub-station. A sub-plot and few lines in plant crop was attacked by this insect. The infected lines were suffered bit as late identification of casual insect. All the field was applied with granular (Virtako) for twice with irrigation.

Termite attacks occurred sometime, However, this year timely application of Chlorpyrifos avoided such attacks. Rodents like rats, porcupines, wild boars, monkeys and pet animals (cows, goats) attack the sugarcane crop at this sub-station. Barbed wire in check form fence the area, even then these animals get themselves enable to enter the field.

Rats usually attack in the month of April to June. In the year of 2018, rat attacks were significant causing some notable damage to the crop. They used to drill burrows across the severely attacked plots through their banks. So, during the field preparation, the rat burrows were kept in mind and deep hoeing was practiced. The plot banks were also dig to demolish such burrows which found deep into the ground through the banks and even in the plots themselves. It was the reason why the Aluminum tablets were not working. In 2019, the rat attacks were found only in ratooning plots but their frequency was much low as compared to the 2018.

Porcupines normally attack during the severe winter season. They usually got themselves inside through the fence by digging soil. Single porcupine as observed damage 3 to 5 stalks upon attack. Poisonous baits of potato and guava are normally applied to control this rodent. **Wild boars** are another group of rodents that cause sometime severe loss to the crop. They usually walk around the fence and upon getting weak points enter the field by pushing and lifting the fence upward. This year their first attack was observed in the mid of October and so far they are causing the loss to the crop. There was a family or group comprising 7 to 8

members which were killed by placing the poisonous baits. Poultry feed prepared with Temik, Zinc Phosphide and Referee (Granular) was used to control their attacks. Another newly emerged group of rodents includes monkeys.

Monkey attacks to sugarcane crop were first observed at this sub-station in the January/February last year. They attacked the crop for 8 to 10 times during 7 to 8 weeks. Fire crackers were useful to avoid their attacks. However, this year monkeys turned most dangerous and significant animals causing loss to the crop. They are attacking the crop for last three months and their number has increased to 60 to 80. These pests attack the field from the East of South and sometime from the South. This region is covered with pine trees and Grand Trunk road to Murree runs on this side with a hotel point. In the morning, evening and in cloudy conditions, there is cold on this side and they used to move down towards open warms areas. They normally run away by plucking the stalk and have turned strong pests this years. Firecrackers are not working as they are now turned used to. Slingshot and Chowkidari are only measure being taken to control their attacks.

Flowering

Flowering started from the month of November. During this season, 6 lines of sugarcane have developed flags while only one line BJ-6431 has produced arrows (Table-1.1). Severe winter conditions might have retarded the development of differentiated inflorescence. However, at the end of February, progress of flagging was very slow but now some improvement is being seen.

Sr.#	Variety/Line	Flags	No. of	Sr.#	Variety/Line	Flags	No. of
			Arrows				Arrows
1	BJ-6431	30	12	4	S-95-NSG-45	3	
2	S-05-FD-317	39		5	S-95-NSG-60	2	
3	S-3641	7		6	S-13-M-45	26	
Total Flags		1	07	T	otal Arrows		12

In the month of July 2019, flowering season completed for 2018-19 producing 392 arrows among 30 varieties (Figure 1.2). Figure 1.1 showed the flowering of clones at this substation.

Figure 1.1: Flowering at SBSS, Murree.

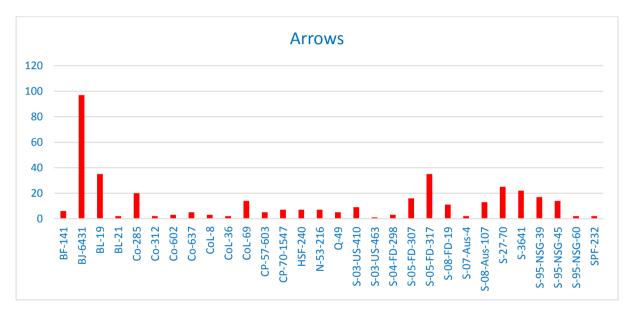


Figure 1.2: Production of arrows during the year 2018-19.

The flowering of sugarcane at SBSS, Murree during the season 2018-19 was very interesting and informative. Important growth control factor, the temperature, played its vital, distinct and prominent role in the control of flowering. Same situation is being observed during this season as much reduced temperature effected the flowering behavior of almost all the varieties/lines except BJ-6431. This lines most probably is from relative *Saccharum* spp. Its flowering behavior depicts that it is purely belong to *Saccharum sinense* or its early generation hybrid. Lower temperature retards the growth of floral primordial turning the emergence of inflorescence late. Response of varieties/lines to flower was unusual, that most of them turned late flowering. Upon categorizing the varieties/lines based on flowering behavior at the end of flowering season, out of 30 flowering clones, 25 produced late (May-June) flowering (Figure 1.3 and Table-1.2).

Sr. #	Variety/Line	Behavior	Sr. #	Variety/Line	Behavior
1	BF-141	Late ^a	16	Q-49	Late
2	BJ-6431	Early ^b	17	S-03-US-410	Late
3	BL-19	Intermediate ^c	18	S-03-US-463	Late
4	BL-21	Late	19	S-04-FD-298	Late
5	Co-285	Late	20	S-05-FD-307	Intermediate
6	Co-312	Late	21	S-05-FD-317	Intermediate
7	Co-602	Late	22	S-08-FD-19	Late
8	Co-637	Late	23	S-07-Aus-4	Late
9	CoL-8	Late	24	S-08-Aus-107	Intermediate
10	CoL-36	Late	25	S-27-70	Late
11	CoL-69	Late	26	S-3641	Late
12	CP-57-603	Late	27	S-95-NSG-39	Late
13	CP-70-1547	Late	28	S-95-NSG-45	Late
14	HSF-240	Late	29	S-95-NSG-60	Late
15	N-53-216	Late	30	SPF-232	Late

Table-1.2: Flowering studies of clones at SBSS, Murree for 2018-19

a: Starts flowering between November and February; b: Flower between March and April; c: flower between May and June.

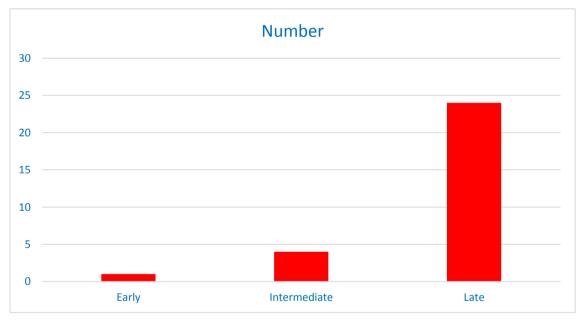


Figure 1.3: Flowering behavior of varieties during 2018-19.

1- Fuzz Production

Open Pollination

During the current season, fuzz has been harvested from a single line BJ-6431 only producing 5gram of it. During previous year, a total 955 gram of fuzz was developed from open pollinating clones.

Hybridization

For the current season, the crossing/hybridization was done in April-May. During previous season, twenty bi-parental crosses (Table-1.3) were carried out producing 134 gram of fuzz. In previous season, for first time pollen collection was practiced in the field and shed on female flower (Fig. 1.4). Couple of attempts were also made to collect pollen by subjecting the flower to artificial light (Fig. 1.5).

С

Figure 1.4: Different stages of pollen collection from flowers in the field. A: covering the flower with paper bag; B: Pollens collected in bag and C: pollens collected using papers bag in the field.

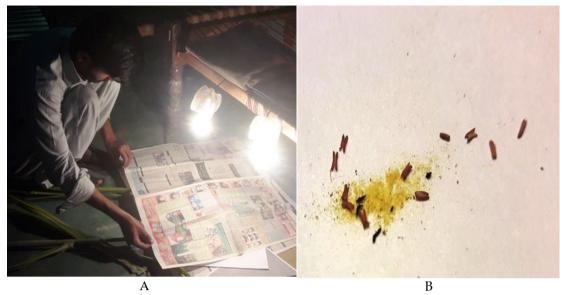


Figure 1.5: Pollen collection under bulb. A: Arrows placed under the bulbs and covered with paper to protect the pollens from drying; and B): Pollens collected under bulb.

By using manual pollination technique, the following crosses were attempted depending upon the flowers available in the field (Table-1.3). Such crosses were attempted till first fortnight of June because the pollen shedding ability of the clones was not as good as in the month of May.

Sr #	Cross Combination						
1	BL-19	Х	S-95-NSG-45				
2	BL-19	Х	S-95-NSG-39				
3	BL-19	Х	Co-285				
4	S-08-FD-19	Х	BL-19				
5	Co-285	Х	BL-19				
6	Co-637	Х	S-04-FD-298				
7	CoL-69	Х	Co-637				
8	CoL-69	Х	Co-285				
9	Co-602	Х	S-04-FD-298				
10	S-05-FD-317	Х	BL-19				
11	Co-312	Х	Co-285				
12	S-27-70	Х	Co-602				
13	Co-285	Х	CoL-69				
14	S-08-Aus-107	Х	Co-285				
15	S-95-NSG-60	Х	Co-285				
16	BL-19	Х	Co-637				
17	S-05-FD-317	Х	Col-69				
18	BL-19	Х	S-27-70				
19	BL-19	Х	S-05-FD-317				
20	S-05-FD-307	Х	Co-637				

Table-1.3: Bi-parental crosses at SBSS, Murree for 2018-19.

Raising of Seedlings

Fuzz is normally sown in the month of June, July and August. During required season, the fuzz produced sown as mentioned. Fuzz produced in the previous season at the sub-station was also sown here. A total of 257gm of fuzz was sown producing a total of 46 seedlings among 6 varieties/lines. Though the number of seedlings finally developed was low, the germination was very encouraging among few varieties like Co-285 and Co-673 (Table-1.4).

Sr. #	Variety	Seedlings
1	S-95-NSG-60	20
2	S-95-NSG-39	6
3	Co-602	4
4	Co-637	1
5	S-27-70	1
6	Co-285	14
	Total	46

Table-1.4: Production of seedlings during 2019-20

2- Flowering Induction Experiment

Objectives

This pilot experiment is focused to induce flowering in varieties/lines shy to flower under local environmental conditions. The objective of the experiment is to induce flowering in flowering-shy clones and improve fuzz viability. By inducing flowering shy varieties, it will be possible to include in them in the breeding program in future. Based on the objectives of the experiment, it is divided into two portions:

- i. Flower induction in flower shy varieties/lines
- ii. Improve or increase the fuzz viability in naturally flowering varieties/lines.

Selection of Material

Material selected for experiment is according to each of its each portion. For each of these two portions of the experiment, 10 varieties/lines were selected (Table-1.5). A total of 18 lines are selected individually for both of these portions, two varieties (HSF-240 and S-05-FD-317) being common in both.

	Flower Induction	n		Fuzz Viability	,
Sr. #	Variety/Line	Category	Sr. #	Variety/Line	Category
1	CPF-247	А	1	HSF-240	
2	SPF-213	А	2	S-05-FD-317	
3	S-06-US-658	А	3	BL-19	
4	S-02-US-133	А	4	CoL-8	
5	CP-43-33	В	5	Col-36	Medium
6	CP-77-400	В	6	Co-285	to low
7	CPF-237	С	7	7 S-08-FD-19	
8	HSF-240	D	8	S-95-NSG-60	flowering
9	S-05-FD-317	Е	9	CP-85-1491	
10	S-95-NSG-59	F	10	S-07-Aus-4	

Table-1.5: Varieties/lines selected for both portions of the experiment

*: Based on flowering ability under local natural conditions; A: No flagging; B: Flags only (very low); C: Low flowering; D: Medium Flowering E: High flowering; F: Unknown.

These selected varieties/lines were sown on 20-02-2019 in plastic bags of size 12 x 18". These were shifted to the iron pots (diameter: 14" and height: 18inch; volume 45 liter) on 01-04-2019. Two pots for each variety were maintained; one for treatment and other for control. Weekly recommended dose of fertilizers as in Table-1.6 was applied. Water was applied at regular intervals.

Nutrients	Conct.	Composition ^c
Nitrogen (N)	1.42 gm	20%
Potassium (K)	1.42 gm	14%
Phosphorus (P)	0.28 gm	8%
Sulphur (S) ^d	0.54 gm	9.7%
Boron (B)	0.17 gm	0.04%
Magnesium (Mg)	16 mg	2%
Manganese (Mn)	2.08 mg	0.26%
Copper (Cu)	1.60 mg	0.2%
Zinc (Zn)	1.12 mg	0.14%
Iron (Fe)	0.16 mg	0.02%
Molybdenum (Mo)	0.05 mg	0.006%

Table-1.6: Concentration of nutrients using Complex^a andFFC Boron^b

a: Head Land Complex by Swat Agros; b: 3 Kg packing of Boron by FFC; c: Composition of Headland Complex; d: complimentary

This above mentioned dose as in Table-1.6 was terminated on 02-09-2019 for all pots and a new dose of fertilizers excluding Urea (Nitrogen) was initiated according to the Table-1.7. The purpose to reduce nitrogen levels prior to flowering induction either naturally or artificially was to force the plant from vegetative to reproductive phase.

Nutrients	New dose ^a
Nitrogen (N)	0.24 g
Potassium (K)	1.42 g
Phosphorus (P)	0.28 g
Sulphur (S) ^a	0.00 g
Boron (B)	0.17 g
Magnesium (Mg)	16 g
Manganese (Mn)	2.08 g
Copper (Cu)	1.60 g
Zinc (Zn)	1.12 g
Iron (Fe)	0.16 g
Molybdenum (Mo)	0.05 g

Table-1.7: Start of new dose to potted plants excluding Urea Nitrogen

a: this dose started today. It supplies complimentary nitrogen (mixed in DAP and Complex) to the plants only. along with head

However, the dose as in Table-1.6 (including Urea) was again started on 04-11-2019 to pots for fuzz viability and in control. However, potted varieties selected for induction experiment are still receiving fertilizers as in Table-1.7 (excluding Urea Nitrogen).

Methodology

The pots to be subjected to photoperiod and temperature treatments are placed on two trollies. One trolley contains plants for induction experiments while other accommodates the fuzz viability experimental pots (Figure-1.6).

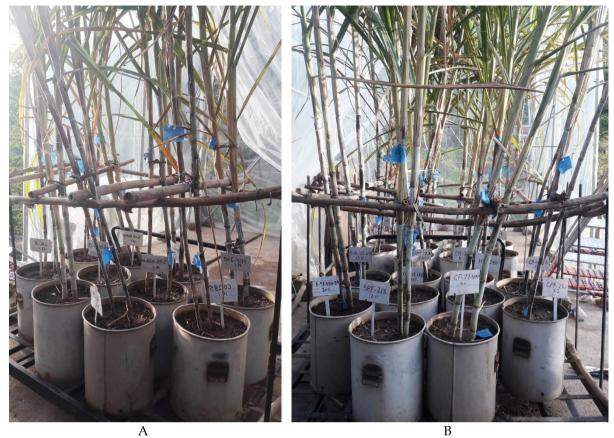
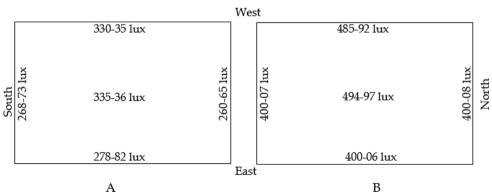



Figure-1.6: Pots to be treated for photoperiod and temperature are placed on trollies. A: pots for fuzz viability experiments; B: pots for flower induction experiment.

Provision of lights

Photoperiod is controlled before the dawn and after the dusk. The lights are turn on both before the dawn and dusk to extend the photoperiod. Additional light is provided using a combination of incandescent, compact and tube florescent lamps. Figure-1.7 reveals that the light intensity at different height in the PH.

A B Figure-1.7: Intensity of light provided by the incandescent, compact and tube florescent installed in the PH when all light points are turned on. A: light intensity when recorded at almost 5 feet high from floor; B: intensity of light when recorded at almost 8 feet above floor.

Light data of sunlight are also recorded at dawn and dusk. In the evening the light data are recorded until the intensity of light turned zero on lux meter. Similarly, in the morning, time to appear the first lux on lux meter is taken with subsequent readings. Every time 7 to 10 or more readings are taken. The purpose to record the light data is to facilitate the future photoperiod decisions.

Provision of temperature

For temperature control, two temperature control units and two heater blowers are used. To maintain the air moisture, three humidifiers are used.

Provision of Photoperiod

At the start of the experiment the photoperiod was maintained according to the plant maturity. Three different strategies were followed for applying the photoperiod. Following three steps are taken for applying the photoperiod.

i. Decreasing photoperiod at 90s

According to the plant data recorded on 17-08-2019, 50% of plants both for induction and fuzz viability experiments were mature (Table-1.8). Initially a decline of 90s per day was maintained starting from 14h 23min. The natural photoperiod was rapidly reducing. So some extra time to the plants to get mature was provided by reducing the rate photoperiod.

Experimen t	Sr. #	Variety / Line	Pot #	Total	P1/P2	Health y	Average / Weak	Injure / Damg	Naked I. node	Remarks
	1	CPF-247	1.1	2	1	1			4	Mature
uo	1	CI I-247	1.1	2	2	1			5	Mature
Induction	2	SPF-213	2.1	2	1	1 ^G			3	Immature
np	2	511-215	2.1	2	2	1 ^G			2	Immature
In	3 S-06-US-658 3.	3.1	2	1	1 ^G			4	mature	
	5	3-00-03-038	5.1	2	2	1 ^G			4	mature
	4	S-02-US-133	4.1	2	1	1			2	immature
Mature	4	5-02-05-155	4.1	2	2	1				immature
plants ^A :	5	CP-43-33	5.2	2	1	1 ^G			4	mature
1					2	1 ^G			7	mature
	6	CPF-237	7.2	2	1	1 ^G			3	Immature
50.0/	0	CI 1-237	1.2	2	2	1 ^G			1	immature
50 %	7	HSF-240	8.1	2	1	1			2	immature
	7	1151-240	0.1	2	2	1			2	immature
	8	CP-77-400	9.1	2	1	1 ^G			5	mature
	0	CI -77-400	7.1	2	2	1^{G}			3	immature
	9	S-05-FD-317	17.1	2	1	1			5	mature
	7	5-05-1-0-517	17.1	2	2	1			6	mature
	10	S-95-NSG-59	20.1	2	1	1			2	immature
	10	5 75 1150-57	20.1	2	2	1			4	Mature

Table-1.8: Data of potted plants that will undergo photoperiod and temperature treatments as recorded on 17-08-2019.

17

	1	BL-19	6.1	2	1	1 ^G		 5	mature
	1	DL-19	0.1	2	2	1 ^G		 6	mature
Fuzz Viability	2	CoL-8	12.1	2	1	1		 	mature
iab	2	COL-0	12.1	2	2	1		 1	mature
Z V	3	Col-36	13.1	2	1	1		 4	immature
Fuz	5	01-30	15.1	2	2	1		 3	mature
	4	Co-285	14.1	2	1	1 ^G		 4	immature
Mature	4	C0-285	14.1	2	2	1 ^G		 3	mature
plants ^A :	5	S-08-FD-19	15.1	2	1	1 ^G		 1	immature
piants :	3	5-00-110-17	15.1	2	2	1 ^G		 1	immature
	6	S-95-NSG-60	16.1	2	1	1 ^G		 6	immature
50.0/	0	3-95-1150-00	10.1	2	2	1 ^G		 9	mature
50 %	7	S-05-FD-317	11.1	2	1	1 ^G		 1	mature
	/	3-05-1 ⁻ D-517	11.1	2	2	1		 2	immature
	8	CP-85-1491	18.1	2	1		1 Ave	 	immature
	0	CI-0J-1491	10.1	2	2		1 Ave	 2	mature
	9	HSF-240	19.1	2	1	1		 	immature
	9	1151-240	17.1	2	2	1		 	mature
	10	S-07-Aus-4	10.1	2	1	1		 1	mature
	10	5-07-Aus-4	10.1	2	2	1		 1	immature

A: Plant with minimum four internode is taken as mature; G: Vigorous growth, most of the plant for treatments are showing vigorous growth

On 05-09-2019, a photoperiod of 14h 3m 0s was achieved.

ii. Decreasing photoperiod at 5m

According the potted plant data recorded on 03-09-2019, the plants were getting mature quite rapidly and 77% got mature as in Table-1.9 given below. So a decline in photoperiod at rate of 5m per day was decided on 06-09-2019 to reach the starting photoperiod of 13h and 26min.

Experiment	Sr. #	Variety / Line	Pot #	Total	P1/P2	Healthy	Average/ Weak	Injure/ Damg	Naked I. node	Remarks
	1	CPF-247	1.1	2	1	1			5	mature
-	1	CPF-247	1.1	2	2	1			7	mature
Induction	2	SPF-213	2.1	2	1	1 ^G			3	immature
npu	2	SFT-215	2.1	2	2	1 ^G			3	immature
1	3	S-06-US-658	3.1	2	1	1 ^G			4	mature
	3	3-00-03-038	5.1	2	2	1 ^G			5	mature
	4	S-02-US-133	4.1	2	1	1			4	mature
Mature	4	5-02-05-155	4.1	2	2	1			3	immature
Mature plants ^A :	5	CP-43-33	5.2	2	1	1 ^G			5	mature
	5	CF-45-55	5.2	2	2	1 ^G			7	mature
	6	CPF-237	7.2	2	1	1 ^G			6	mature
70 %	0	CFF-237	1.2	2	2	1 ^G			8	mature
	7	HSF-240	8.1	2	1	1			4	mature
	7	H3P-240	0.1	2	2	1			3	immature
	8	CP-77-400	9.1	2	1	1 ^G			4	mature
	0	Cr-//-400	7.1	2	2	1 ^G			3	immature
	9	S-05-FD-317	17.1	2	1	1			5	mature
	,	5-05-110-517	17.1	2	2	1			5	mature

 Table-1.9: Data of potted plants that will undergo photoperiod and temperature treatments recorded on 03-09-2019.

	10	S-95-NSG-59	20.1	2	1	1		 3	immature
	10	3-95-1130-59	20.1	2	2	1		 4	mature
	1	BL-19	6.1	2	1	1 ^G		 12	Mature
lity	1	DL-19	0.1	2	2	1 ^G		 9	Mature
iabi	2	CoL-8	12.1	2	1	1		 4	Mature
Fuzz Viability	2	COL-8	12.1	2	2	1		 5	mature
Fuz	3	Col-36	13.1	2	1	1		 6	mature
	5	00-30	15.1	2	2	1		 4	mature
	4	Co-285	14.1	2	1	1 ^G		 9	mature
Mature	-	0 205	14.1	2	2	1 ^G		 9	mature
plants ^A :	5	S-08-FD-19	15.1	2	1	1 ^G		 4	mature
	5	5 00 15 17	15.1	-	2	1 ^G		 5	mature
0.5.0/	6	S-95-NSG-60	16.1	2	1	1 ^G		 7	mature
85 %	0	5 75 1150 00	10.1	2	2	1 ^G		 9	mature
	7	S-05-FD-317	11.1	2	1	1 ^G		 4	mature
	,	5 05 12 517	11.1	2	2	1		 3	immature
	8	CP-85-1491	18.1	2	1		1 Ave	 4	mature
			10.1	-	2		1 Ave	 3	immature
	9	HSF-240	19.1	2	1	1		 5	mature
	Í	1101 210	19.1		2	1		 6	mature
	10	S-07-Aus-4	10.1	2	1	1		 3	immature
	10	5 07 7405 4	10.1	2	2	1		 6	mature

A: Plant with minimum four internode is taken as mature; G: Vigorous growth, most of the plant for treatments are showing vigorous growth

It took 10 days (06 to 15-09-2019) to reach a photoperiod of 13h 26min from 14h 3min. To this point, the temperature was not of much concern.

iii. Decreasing photoperiod at 50s

Actual photoperiod treatment started from 16-09-2019 starting from 13h 26min. this light regime was continued until the photoperiod of 12h achieved as on 14-12-2019. Then the plants were left under natural conditions except temperature control. Photoperiod regimes practiced are summarized in Table-1.10.

Table-1.10: Photoperiod regimes used in the photoperiod treatment for flowering induction

Photoperiod	Periods		Declining	Photo	period
Regimes	Starting	Ending	Rate ^a	Starting	Ending
Ι	23-08-2019	05-09-2019	90s	14h 26 min 30s	14h 3 min 0s
II	06-09-2019	15-09-2019	5 min	14h 3 min 0s	13h 26 min 0s
III ^b	16-09-2019	14-12-2019	50s	13h 26 min 0s	12h 0 min 0s

a: Declining rate per day

Plants for fuzz viability experiment are receiving natural photoperiod. They are only being subjected to temperature control only.

The temperature mentioned in Table-1.11 above is recorded when the gate of the PH was

opened. However, in the month of November the internal temperature, when the gate of the PH is opened in the evening for light treatments, remains quite below. To cope this situation, the gate of the PH was left open to get it warm with sunlight. Later when the warmth of sunlight reduced, the gate of the PH used to be closed and all light along with BH1 or 2 turned on before closing the gate of the PH. This practice proved fruitful in increasing the internal temperature of the PH. As the optimum temperature at the time of induction is mandatory.

Period	Temperature ^a	Humidity ^b
24-08 to 05-09-2019	26.0	79.5
06-09 to 15-09-2019	26.78	77.2
16-09 to 31-10-2019	22.5	89.7
01-11 to 14-12-2019	19	75

 Table-1.11: Internal temperature and humidity as recorded when the gate of the PH was opened in the morning

a: Average internal temperature (°C) for different time periods when the gate of the PH is opened in the morning; b: Humidity (%) as recorded in the morning.

CONCLUSION

Induction Experiment

Various photoperiods at different declining rates have been utilized by the breeders to induce flowering. Photoperiods of 12h 50 min, 12h 45 min, 12h 35 min, 12h 30 min etc. have been taken as starting point. Similarly a declining rate of 60s, 50s, 45s, 40s and 30s have been practiced for artificial induction in sugarcane. However, it is inferred that most of the sugarcane varieties/lines flower between a photoperiod ranges of 12h 26 min to 12h 16 min ± 15 minutes. In this experiment, a photoperiod of 13h 26 min was taken as starting point with declining at rate of 50s per day. It was reduced to 12h 0 min till December 14, 2019.

Fuzz viability Experiment

Plants for fuzz experiment have received their natural photoperiod and their temperature is being controlled.

3. NURSERY- I

During 2018-19, 800 clones were tested in a single row non-replicated experiment having a net plot size of 4 x 1.2 m. Keeping in view the desirable characters such as growth vigor, erectness, brix %age, lodging, insect pests and diseases, these clones were compared with two standard varieties i.e. HSF-240 & CPF-249. The brix reading was recorded by hand refracto-meter. After comparing the performance of these clones with check varieties,

188 clones were selected and promoted to Nursery-II, while 612 clones were rejected due to undesirable characters. List of promoted clones is given below (Table-1.12).

		LIST OF TROMOTED C		-			
	S2018-				S2018-		
Sr#	SLF	Parentage	Brix	Sr#	SLF	Parentage	Brix
1	1	SL 81 01 x US 165	16.8	34	112	Co 775 x SL 71 30	18.0
2	5	SL 81 01 x US 165	13.7	35	113	Co 775 x SL 71 30	18.0
3	10	SL 81 01 x US 165	13.7	36	128	SLC 08 126 x Co 775	19.3
4	13	SL 81 01 x US 165	16.0	37	133	SLC 08 126 x Co 775	19.7
5	14	SL 81 01 x US 165	17.0	38	134	SLC 08 126 x Co 775	19.0
6	15	SL 81 01 x US 165	18.2	39	136	SLC 08 126 x Co 775	20.0
7	16	SL 81 01 x US 165	15.0	40	138	SLC 08 126 x Co 775	19.0
8	17	SL 81 01 x US 165	19.2	41	143	SLC 08 126 x Co 775	17.5
9	21	SL 81 01 x US 165	16.3	42	144	SLC 08 126 x Co 775	15.0
10	28	H 76 4713 x SLT 8404	15.7	43	147	SLC 08 126 x Co 775	15.3
11	50	SL 98 2557 x PH 84 1000	14.3	44	162	Q 73 x SL 96 287	14.3
12	51	SL 98 2557 x PH 84 1000	14.7	45	166	Q 73 x SL 96 287	15.0
13	54	SL 98 2557 x PH 84 1000	18.3	46	188	SLC 12 63 x US 312	14.7
14	57	SL 98 2524 x SL 96 724	17.7	47	211	SL 96 724 x Q 86	14.8
15	58	SL 98 2524 x SL 96 724	15.3	48	235	HoSG 315 x SL 82 03	20.3
16	61	SL 98 2524 x SL 96 724	16.0	49	239	HoSG 315 x SL 82 03	21.0
17	62	SL 98 2524 x SL 96 724	16.0	50	249	CSSG 676 x SL 81 01	18.0
18	63	SL 98 2524 x SL 96 724	15.7	51	251	CSSG 676 x SL 81 01	16.3
19	65	SL 98 2524 x SL 96 724	17.3	52	252	CPSH 35 3 x 95 4514	19.0
20	66	SL 98 2524 x SL 96 724	17.0	53	259	Co 775 x NS 11	16.5
21	67	SL 98 2524 x SL 96 724	15.0	54	260	Co 775 x NS 11	15.7
22	71	SL 98 2524 x SL 96 724	16.5	55	266	SL 81 09 x LF 65 3666	15.7
23	74	SL 98 2524 x SL 96 724	14.8	56	268	SL 81 09 x LF 65 3666	17.2
24	75	SL 81 01 x PH 86 144	14.7	57	271	SL 81 09 x LF 65 3666	15.0
25	88	SL 81 01 x PH 86 144	20.7	58	275	SL 95 4443 x US 54	15.7
26	90	SL 96 061 x US 312	21.2	59	276	SL 95 4443 x US 54	19.7
27	91	SL 96 061 x US 312	17.5	60	279	SL 95 4443 x US 54	15.3
28	92	SL 96 061 x US 312	20.5	61	282	SL 95 4443 x US 54	18.7
29	94	SL 96 061 x US 312	20.7	62	284	SL 95 4443 x US 54	16.5
30	100	SL 96 061 x US 312	19.7	63	289	SL 89 1673 x SLC 12 02	17.0
31	101	SL 96 061 x US 312	20.7	64	301	SL 98 2549 x BF 166	16.0
32	105	SL 96 061 x US 312	19.3	65	306	SL 98 2549 x BF 166	14.7
33	106	SL 96 061 x US 312	19.3	66	307	SL 92 4918 x LF 63 64	15.7

Table-1.12 LIST OF PROMOTED CLONES

	S2018-				S2018-		
Sr#	SLF	Parentage	Brix	Sr#	SLF	Parentage	Brix
						CSSG 676 open poly	
67	310	US 718 x SL 98 2549	16.7	100	448	cross	16.2
						CSSG 676 open poly	
68	317	US 718 x SL 98 2549	19.0	101	451	cross	16.5
		CPSG 1663 x Open poly				CSSG 676 open poly	
69	326	cross	15.0	102	464	cross	16.3
		CPSG 1663 x Open poly				CSSG 676 open poly	
70	335	cross	16.5	103	466	cross	21.7
		CPSG 1663 x Open poly				CSSG 676 open poly	
71	342	cross	15.7	104	471	cross	20.7
		CPSG 1663 x Open poly				CSSG 676 open poly	
72	347	cross	17.0	105	473	cross	21.0
		CPSG 1663 x Open poly				CSSG 676 open poly	
73	353	cross	15.3	106	486	cross	18.2

I		CPSG 1663 x Open poly				SLC 08 16 open poly	
74	354	cross	18.7	107	487	cross	17.2
		CPSG 1663 x Open poly	1017	207	,	SLC 08 16 open poly	
75	355	cross	17.7	108	488	cross	18.0
		CPSG 1663 x Open poly				SLC 08 16 open poly	
76	356	cross	17.5	109	489	cross	19.7
						SLC 08 16 open poly	
77	369	SLC 08 17 open poly cross	16.5	110	490	cross	20.0
70	276		14.0	111	401	SLC 08 16 open poly	10.5
78	376	SLC 08 69 open poly cross	14.8	111	491	cross SLC 08 16 open poly	19.5
79	381	SLC 09 02 open poly cross	18.3	112	492	cross	18.8
	501		10.5	112	172	SLC 08 16 open poly	10.0
80	384	HoSG 315 open poly cross	16.0	113	493	cross	19.7
						SLC 08 16 open poly	
81	388	HoSG 315 open poly cross	17.0	114	494	cross	18.2
	202		1		10 -	SLC 08 16 open poly	10.0
82	393	HoSG 315 open poly cross	17.0	115	495	cross	19.8
83	397	HoSG 315 open poly cross	18.0	116	496	US 694 open poly cross	18.0
84	398	HoSG 315 open poly cross	19.0	117	506	SL 6301 x US 165	16.3
	200		17.0	110	5 00	SL 98 2792 x PH 84	10.0
85	399	HoSG 315 open poly cross	17.0	118	508	167 M 429 50 - SL 09	19.0
86	406	HoSG 315 open poly cross	19.5	119	518	M 438 59 x SL 98 2549	17.5
00	400	11050 515 open poly closs	17.5	117	510	M 438 59 x SL 98	17.5
87	407	HoSG 315 open poly cross	17.2	120	522	2549	18.5
						M 438 59 x SL 98	
88	408	HoSG 315 open poly cross	16.2	121	525	2549	17.3
	10.0					M 438 59 x SL 98	
89	409	HoSG 315 open poly cross	19.2	122	529	2549	17.5
90	418	HoSG 315 open poly cross	17.0	123	532	M 438 59 x SL 98 2549	18.5
30	410	11030 313 open poly closs	17.0	123	552	M 438 59 x SL 98	10.5
91	420	HoSG 315 open poly cross	15.7	124	539	2549	17.3
92	433	HoSG 315 open poly cross	19.2	125	546	Aus 01 x SL 87 33	18.8
93	434	HoSG 315 open poly cross	19.3	126	547	Aus 01 x SL 87 33	19.0
94	435	HoSG 315 open poly cross	17.8	127	551	Aus 01 x SL 87 33	20.7
95	436	HoSG 315 open poly cross	18.0	127	553	Aus 01 x SL 87 33	20.7
<u>95</u> 96	430	· · ·	18.5				
		CSSG 676 open poly cross		129	554	Aus 01 x SL 87 33	19.0
97	438	CSSG 676 open poly cross	18.7	130	558	Aus 01 x SL 87 33	18.3
<u>98</u>	441	CSSG 676 open poly cross	19.7	131	569	Aus 01 x SL 87 33	21.0
99	446	CSSG 676 open poly cross	18.7	132	575	Aus 01 x SL 87 33	18.2

	SLF				SLF		
Sr#	18-	Parentage	Brix	Sr#	18-	Parentage	Brix
133	577	Aus 01 x SL 87 33	19.2	161	697	SL 92 5588 x Co 622	17.0
134	581	Aus 01 x SL 87 33	18.7	162	698	Co 775 x LF 78 3255	17.7
135	582	Aus 01 x SL 87 33	18.3	163	699	Co 775 x LF 78 3255	19.0
136	595	Aus 01 x SL 87 33	21.0	164	704	CPSG 25 x open poly cross	20.0
137	597	Aus 01 x SL 87 33	16.3	165	705	CPSG 25 x open poly cross	20.2
138	598	Aus 01 x SL 87 33	18.5	166	707	CPSG 25 x open poly cross	21.7

139	602	Aus 01 x SL 87 33	20.0	167	710	SL 96 128 x CPSG 437	16.7
140	603	Aus 01 x SL 87 33	18.7	168	714	SL 96 128 x CPSG 437	21.0
141	604	Aus 01 x SL 87 33	18.7	169	715	SL 96 128 x CPSG 437	16.7
142	605	Aus 01 x SL 87 33	20.0	170	717	SL 98 2149 x LF 76 5209	16.7
143	606	Aus 01 x SL 87 33	19.5	171	721	Q 73 x SL 96 276	19.8
144	608	Aus 01 x SL 87 33	20.3	172	722	Q 73 x SL 96 276	18.0
145	609	Aus 01 x SL 87 33	19.7	173	725	HoSG 1257 open poly cross	20.0
146	610	Aus 01 x SL 87 33	19.2	174	728	HoSG 1257 open poly cross	22.2
147	612	Aus 01 x SL 87 33	21.0	175	739	US 165 x SLC 70 01	18.0
148	614	Aus 01 x SL 87 33	15.5	176	741	US 133 x SLC 09 02	18.2
149	617	SL 96 385 x HoSG 1257	17.7	177	742	US 133 x SLC 09 02	16.3
150	620	SL 96 385 x HoSG 1257	16.5	178	743	US 133 x SLC 09 02	16.3
151	621	SL 96 385 x HoSG 1257	16.7	179	745	US 133 x SLC 09 02	20.0
152	624	SL 96 385 x HoSG 1257	18.5	180	748	US 133 x SLC 09 02	18.0
153	631	SL 96 385 x HoSG 1257	20.3	181	753	US 133 x SLC 09 02	20.5
154	632	SL 96 385 x HoSG 1257	21.7	182	754	US 133 x SLC 09 02	16.0
155	633	SL 96 385 x HoSG 1257	19.8	183	760	US 133 x SLC 09 02	20.7
156	657	SL 96 385 x HoSG 1257	15.8	184	761	US 133 x SLC 09 02	17.8
157	661	SL 81 09 x LF 65 3666	17.8	185	769	CPSH 35-3 x open poly cross	18.7
158	667	SL 81 09 x LF 63 73	15.8	186	772	CPSH 35-3 x open poly cross	14.3
159	675	SL 81 09 x LF 63 73	16.3	187	784	SL 63 01 x CPSH 353	16.2
160	690	CSSG 676 x SL 7130	16.0	188	790	SL 96 128 x NS 15	18.7

All other clones were rejected due to poor growth & recovery, disease & insect pest, lodging etc.

4. NURSERY-II

During 2018-19, 80 clones were tested in a double row non-replicated experiment having a net plot size of 4 x 2.4 m. Keeping in view the desirable characters, such as growth vigor, erectness, brix %age, lodging, insect pests and diseases, these clones were compared with two standard varieties i.e. HSF-240 & CPF-249 (Table-1.13). The brix reading was recorded by hand refracto-meter. After comparing the performance of these clones with check varieties, 14 clones were selected and promoted to Nursery-III, Lists of promoted and retained clones are given below.

 Table-1.13:
 LIST OF PROMOTEDED CLONES (NURSERY II)

	S2017-				S2017-		
Sr.#	SLF-	Parentage	Brix	Sr.#	SLF-	Parentage	Brix
1	SLF 17-11	SLC 1249 (Offi) x SL 8101	17.8	8	SLF 17-211	M 442 51 x SL 8418	16.3
2	SLF 17-40	HSF 240 x Open poly cross	14.7	9	SLF 17-281	HSF 240 x SL 88 116	15.3
3	SLF 17-68	HSF 240 x Open poly cross	19.0	10	SLF 17-284	HSF 240 x SL 88 117	17.0
4	SLF 17-97	BL 04 x open poly cross	15.0	11	SLF 17-290	SPF 245 x SL 95 4444	20.2
5	SLF 17-113	SPF 245 x open poly cross	16.8	12	SLF 17-292	SPF 245 x SL 95 4444	16.7

6	SLF 17-123	SPF 245 x open poly cross	16.7	13	SLF 17-298	SPF 245 x SL 95 4444	16.8	
7	SLF 17-200	M 442 51 x SL 8418	18.3	14	SLF 17-310	NSG 555 x poly cross	17.7	
	CPF 249				Н	SF 240	19.1	

Remaining 66 clones were rejected due to poor growth & recovery, disease & insect pest, lodging etc.

5. <u>NURSERY-III</u>

During 2018-19, 53 clones were tested at Nursery-III stage (Preliminary yield trials), comprising five (05) sets, each consisted of twelve clones and two check varieties while 5th set was consisted of five clones along with two standard varieties HSF-240 & CPF-249. Among these 53, twenty-seven (27) clones (14 from USA, 12 from Philippine and 01 from India) were from direct introduction. These clones were included in this stage after increasing their seed. 14 clones from USA and one clone from India were provided by SRDB while 12 clones of Philippine were brought by SRI itself. Trial was laid out in RCBD having three replications & net plot size of 4mx3.6m of each replication. Keeping in view the performance 19 clones were promoted to semi-final stage while remaining 34 clones were rejected on the basis of undesirable characters. The observations pertaining to germination %, no of tillers/ plant, no. of canes/ha, sugar recovery and cane yield t/ ha were recorded (Table-1.14) at per growth stages. The results are summarized as under:

SEL	-1	-			-	-	
Sr No	Clone/Var iety	Germ (%)	Tillers /plant	Cane count (000 ha ⁻¹)	Cane yield (t ha ⁻¹)	Sugar Recovery (%)	Remarks
1	PSR 00-23	44.847 A	0.7600 B	78.67 EFGH	83.33 BCDE	8.957 E	Rejected due to Red Rot
2	PSR 98-140	31.820 DEF	0.8867 B	85.33 CDEFGH	79.00 BCDE	10.133 CDE	Rejected due to Smut
3	PSR 01-232	28.940 EF	0.7933 B	97.33 CDE	69.00 DEF	10.620 BCD	Rejected due to Red Rot
4	PSR 99-85	30.303 EF	0.6533 B	76.00 GH	58.00 FG	10.270 CD	Rejected due to Red Rot
5	PSR 98-38	39.397 ABCD	0.7967 B	104.33 BC	86.67 BC	11.223 BC	Rejected due to Smut
6	PSR 01-46	36.213 BCDE	0.8867 B	128.33 A	89.00 B	11.543 AB	Rejected due to (Red Rot
7	PSR 99-89	36.820 ABCDE	0.5033 B	92.67 CDEFG	68.33 EF	12.477 A	Rejected due to Red Rot
8	PSR 01-28	30.910 EF	0.3600 B	83.67 DEFGH	74.67 BCDE	9.400 DE	Rejected due to Smut
9	PSR 98-11	35.303 CDE	0.8700 B	98.33 CD	72.33 CDEF	9.607 DE	Promoted
10	PSR 98-27	44.393 AB	0.6767 B	73.00 H	73.67 BCDEF	6.980 F	Rejected due to Smut

SL1-1

11	PSR 99-182	35.457 CDE	0.4933 B	73.00 H	49.67 G	9.427 DE	Rejected due to Pith
12	PSR 00-11	35.907 CDE	1.0100 B	96.33 CDEF	85.00 BCD	9.810 DE	Promoted
13	HSF 240	23.637 F	3.8500 A	118.67 AB	116.00 A	11.783 AB	Standard
14	CPF 249	41.817 ABC	1.0200 B	78.00 FGH	83.33 BCDE	11.147 BC	Standard
LS	SD at 0.05	8.33	1.766	19.288	16.537	1.2335	

Twelve clones (12) of Philippine with two check varieties were sown in Set I, PSR 00-11 and PSR 98-11 were promoted to Semifinal. Other clones were rejected keeping in view Red Rot & Smut resistance, pith and lodging behavior etc.

Page 26 of 82

b							1
Sr.		Germ	Tillers	Cane count	Cane yield	Sugar	Remarks
No.	Clone/Variety	(%)	/plant	(000 ha ⁻¹)	$(t ha^{-1})$	Recovery (%)	
1	CP 00-1101	54.543 A	1.0600 B	67.33 GHI	80.67 BCD	12.853 AB	Promoted
2	CP 09-1952	49.847 A	1.0467 B	94.67 CDE	74.00 BCDE	12.840 AB	Rejected due to Red rot
3	CPCL 02-6448	42.123 AB	1.1733 B	108.67 BCD	84.33 BCD	13.267 A	Promoted
4	CP 01-1372	54.397 A	1.0033 B	93.67 DEF	84.00 BCD	12.367 BC	Rejected due to H. Lodg.
5	CP 03-1912	43.787 AB	1.6933 AB	30.33 J	70.00 CDE	11.390 DEF	Rejected due to Red rot
6	CPOCL 05-1102	43.483 AB	1.0700 B	55.67 I	95.33 AB	12.033 CD	Promoted
7	CO 05-1526	50.760 A	1.1033 B	133.33 A	95.33 AB	8.163 H	Rejected due to H. Lodg.
8	CPCL 05-1201	39.090 AB	1.4033 B	115.67 ABC	66.00 DE	11.677 CDEF	Rejected due to Red rot
9	CP 09-1822	39.243 AB	1.5967 AB	80.00 EFGH	68.67 DE	9.747 G	Rejected due to H. Lodg.
10	CP 09-1385	32.423 B	4.2667 A	72.33 FGHI	80.00 BCD	11.597 CDEF	Rejected due to Red rot
11	CP 04-1935	46.367 AB	0.6767 B	59.67 HI	55.67 E	8.977 G	Rejected due to H. Lodg.
12	CPCL 02-0926	40.153 AB	1.1400 B	106.33 BCD	92.67 ABC	11.003 F	Rejected due to H. Lodg.
13	HSF 240	40.303 AB	1.6867 AB	119.33 AB	112.33 A	11.783 CDE	Standard
14	CPF 249	41.063 AB	1.2433 B	84.00 EFG	94.33 AB	11.147 EF	Standard
	LSD at 0.05	15.937	2.8322	21.532	23.539	0.7722	

Twelve clones (12) of USA (Direct Introduction) with two check varieties were sown in Set II, CP 00-1101, CPCL 02-6448 and CPOCL 05-1102 were promoted to Semifinal. Other clones were rejected keeping in view Red rot & Smut resistance, pith and lodging behavior etc.

	SET III						
Sr.		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Tillers	Cane count	Cane yield	Sugar	Remarks
No.	Clone/Variety	Germ (%)	/plant	(000 ha ⁻¹)	$(t ha^{-1})$	Recovery (%)	
R1	S2016-SL-02	36.517 ABC	0.9567 A	71.67 CDE	60.00 D	10.730 GH	Rejected due to Smut
2	S2016-SL-41	32.727 BC	1.4133 A	100.33 A	103.33 A	11.947 CD	Promoted
3	S2016-SL-80	36.513 ABC	1.4367 A	52.67 E	61.00 D	13.137 A	Rejected due to Red rot
4	S2016-SL-81	35.607 ABC	1.2400 A	78.67 BCD	92.00 ABC	11.940 CD	Rejected due to Red rot
5	S2016-SL-83	38.790 AB	1.2833 A	92.67 AB	97.67 AB	11.063 EFGH	Promoted
6	S2016-SL-91	35.910 ABC	1.5167 A	78.00 BCD	78.67 BCD	13.100 A	Promoted
7	S2016-SL-104	23.790 C	0.6867 A	93.33 AB	95.67 ABC	12.563 B	Promoted
8	S2016-SL-109	28.483 BC	1.4767 A	92.33 AB	99.33 AB	10.857 FGH	Promoted
9	S2016-SL-114	34.847 BC	1.2167 A	79.33 BCD	91.00 ABC	11.530 DE	Promoted
10	S2016-SL-124	36.363 ABC	1.0300 A	63.67 DE	74.33 CD	12.103 BC	Rejected due to Red rot
11	S2016-SL-127	39.093 AB	0.9467 A	78.00 BCD	62.33 D	11.233 EF	Promoted

SET II

12	S2016-SL-128	48.333 A	1.0367 A	53.67 E	59.33 D	10.657 H	Rejected due to Red rot
13	HSF-240	30.457 BC	1.7867 A	91.67 ABC	77.33 BCD	11.783 CD	Standard
14	CPF-249	34.243 BC	1.2133 A	82.67 ABCD	93.67 ABC	11.147 EFG	Standard
	LSD at 0.05	12.992	1.1223	20.654	22.503	0.4788	

Twelve clones (12) of SRI clones promoted from Sri-Lankan fuzz along with two check varieties were sown in Set III, seven clones i.e. S2016-SL-41, S2016-SL-83, S2016-SL-91, S2016-SL-104, S2016-SL-109, S2016-SL-114 and S2016-SL-127were promoted to Semifinal. Other clones were rejected keeping in view Red rot & Smut resistance, pith, lodging behavior etc.

SET	IV						
Sr.	Clone/Variety	Germ (%)	Tillers	Cane count	nt Cane yield Boo		Remarks
No	•		/plant	(000 ha ⁻¹)	(t ha ⁻¹)	(%) Č	
1	S2016-SL-131	36.363 ABC	0.5267 BC	51.00 G	65.33 DE	12.973 AB	Rejected due to Red rot
2	S2016-SL-143	31.513 BC	1.1000 ABC	59.67 FG	67.33 DE	12.903 AB	Promoted
3	S2016-SL-171	33.180 BC	1.2033 ABC	60.67 FG	67.33 DE	12.153 CD	Rejected due to Red rot
4	S2016-SL-182	40.910 AB	0.6867 BC	81.00 CD	91.00 BC	12.543 BC	Rejected due to Red rot
5	S2016-SL-218	37.577 ABC	1.1167 ABC	65.00 EFG	50.33 E	11.680 DE	Rejected due to Red rot
6	S2016-SL-233	29.543 BC	0.4000 C	79.33 CDE	79.67 BCD	11.010 F	Rejected due to Red rot
7	S2016-SL-234	46.363 A	1.2633 ABC	119.67 A	65.33 DE	12.497 BC	Rejected due to Red rot
8	S2016-SL-240	#N/A	1.3733 AB	82.67 BCD	89.67 BC	12.503 BC	Rejected due to Red rot
9	S2016-SL-276	40.607 AB	0.9267 ABC	67.67 DEF	66.00 DE	10.920 F	Rejected due to Red rot
10	S2016-SL-284	37.427 ABC	0.9267 ABC	90.33 BC	124.33 A	13.157 A	Promoted
11	S2016-SL-290	33.027 BC	0.9667 ABC	74.67 DEF	92.67 B	12.123 CD	Rejected due to Red rot
12	S2016-SL-296	38.183 ABC	0.4267 BC	74.00 DEF	68.67 D	12.850 AB	Promoted
13	HSF-240	32.273 BC	1.8433 A	63.00 FG	70.33 D	11.783 D	Standard
14	CPF-249	27.573 C	1.1200 ABC	97.00 B	75.00 CD	11.147 EF	Standard
	LSD at 0.05	12.674	0.9599	15.199	17.287	0.5417	

Twelve clones (12) of SRI clones promoted from Sri-Lankan fuzz along with two check varieties were sown in Set IV, three clones i.e. S2016-SL-143, S2016-SL-284 and S2016-SL-296 were promoted to Semifinal. Other clones were rejected keeping in view Red rot & Smut resistance, pith and lodging behavior etc.

Sr No	Clone/Variety	Germ (%)	Tillers	Cane count	Cane yield (t ha ⁻¹)	Sugar Recovery	Remarks			
INO	-		/plant	(000 ha ⁻¹)	(t na)	(%)				
1	CO 0238	40.357 A	0.8867 A	59.667 C	89.000 A	11.443 BC	Promoted			
2	CP 02-2400	49.847 A	1.2567 A	75.667 AB	90.000 A	11.090 C	Promoted			
3	CP 7-2137	37.927 A	1.0867 A	70.000 BC	87.000 A	11.533 BC	Rejected due to Red rot			

SET V

4	S2016-SL-300	46.113 A	0.6067 A	67.333 BC	62.000 B	13.647 A	Promoted
5	S2016-SL-306	46.313 A	1.4000 A	86.667 A	87.000 A	13.867 A	Promoted
6	HSF-240	30.807 A	0.9733 A	39.333 D	46.000 B	11.783 B	Standard
7	CPF-249	35.200 A	1.1067 A	75.333 AB	84.667 A	11.147 BC	Standard
	LSD at 0.05	20.808	1.2612	13.456	18.699	0.6802	

Five clones (05) consisting of 02 clones from USA (Direct Introduction), 0ne (01) from India (Direct Introduction) and two (02) clones promoted from Sri-Lankan fuzz along with two check varieties were sown in Set V, four clones (04) i.e. CO 0238, CP 02-2400, S2016-SL-300 and S2016-SL-306 were promoted to Semifinal. Other clones were rejected keeping in view Red rot & Smut resistance, pith and lodging behavior etc.

6. SEMI-FINAL VARIETAL TRIAL (2019-20)

Two sets of sugarcane clones in semi-final varietal trial, each having ten (10) clones along with two (02) check varieties; HSF 240 and CPF 249, were tested at SRI, Faisalabad (Table-1.15). Experiment was laid out in RCBD on 21.02.2019 with 5 repeats (2 repeat were for qualitative analysis) having net plot size of 4x8.4m. Data regarding germination, tillering, cane count and cane yield were recorded. For quality evaluation, analysis of cane juice was also carried out a sugarcane technology laboratory from October to March on monthly basis.

In set –I, out of 10 clones, two clones PSR 07-145 and S2015-SL-89 having cane yield of 205 and 196.3 t/ha with average sugar contents (CCS%) of 11.29 and 11.12 % respectively, were selected and promoted to final varietal trial. Other eight (08) clones were rejected due to low sugar contents and susceptibility to red rot disease.

In Set-II, three (03) clones; S2015 SL-289, S2015 SL-404 and S2015 SL-444 having cane yield of 214, 174.67 and 153.33 t/ha with average sugar contents (CCS%) of 12.37, 11.37 and 11.38 respectively, were selected and promoted to final varietal trail. Whereas clone S2015 SL-416 was retained in semi-final varietal trial for further observation. Remaining six (06) clones were rejected due to low sugar contents and susceptibility to Red rot disease.

Table-1.16: Results Of Semi-Final Varietal Trial

Sr. No.	Clone Name	Germination %	Tillers/ Plant	000 canes/ha	Cane yield t/ha	Ave. CCS % (Oct-2019 to Jan-2020)	Remarks
1.	PSR-07-145	61.52 A	1.726 F	180.33F	205.00 A	11.29	Promoted
2.	S2014-SL-1322	57.36 B	1.686 G	210.67 A	180.40 F	10.07	Rejected due to low recovery
3.	S2014-SL-1700	47.89 C	1.780 E	188.67 D	187.51 D	10.60	Rejected due to low recovery
4.	S2014-SL-2006	48.65 C	1.463 J	152.67 I	144.43 J	11.00	Rejected due to Red rot disease
5.	S2015-SL-10	40.84 F	1.406 K	166.67 G	173.13 H	10.87	Rejected due to low recovery

<u>Set-I.</u>

6.	S2015-SL-89	56.83 B	1.510 I	202.33 B	196.30 C	11.12	Promoted	
7.	S2015-SL-101	47.65 C	2.150 C	160.67 H	183.00 E	09.86	Rejected due to	
							low recovery	
8.	S2015-SL-108	45.32 D	1.560 H	146.00 K	166.00 I	10.58	Rejected due to	
							low recovery	
9.	S2015-SL-158	40.24 F	2.040 D	160.67 H	176.92 G	10.75	Rejected due to	
							Red rot disease	
10.	S2015-SL-244	33.90 G	2.026 D	186.00 E	180.44 F	10.47	Rejected due to	
							low recovery	
11.	HSF-240 (Std.)	42.56 E	2.340 A	150.33 J	174.30 H	11.26	Check Variety	
12.	CPF-249 (Std.)	45.04 D	2.206 B	193.00 C	199.22 B	12.50	Check Variety	
	LSD value	1.40	0.01	1.07	1.29			

Sr. No.	Clone Name	Germination %	Tillers/Plant	000 canes/ha	Cane yield t/ha	Ave. CCS % (Oct- 2019 to	Remarks
						Jan-2020)	
1.	S2015-SL-289	41.600 F	2.040 F	163 F	214.00 B	12.37	Promoted
2.	S2015-SL-290	30.607 I	2.403 B	170 E	144.00 K	10.13	Rejected due to low recovery
3.	S2015-SL-302	48.613 C	2.016 G	174 D	181.00 E	10.47	Rejected due to low recovery
4.	S2015-SL-404	64.510 A	2.230 E	196 B	174.67 G	11.37	Promoted
5.	S2015-SL-416	24.763 J	2.010 G	131 I	138.67 L	11.02	Retained
6.	S2015-SL-444	50.680 B	1.280 J	128 J	153.33 H	11.38	Promoted
7.	S2015-SL-540	40.380 G	1.660 I	144 H	177.67 F	10.42	Rejected due to low recovery
8.	S2015-SL-547	43.800 E	1.816 H	152 G	147.33 J	11.06	Rejected due to Red rot disease
9.	S2015-SL-574	46.170 D	2.260 D	180 C	203.00 C	11.04	Rejected due to Red rot disease
10.	S2015-SL-636	31.533 I	2.360 C	143 H	186.33 D	10.61	Rejected due to Red rot disease
11.	HSF-240 (Std.)	25.353 J	2.680 A	127 J	150.67 I	11.88	Check Variety
12.	CPF-249 (Std.)	34.017 H	2.350 C	211 A	230.67 A	12.20	Check Variety
		1.03	0.02				

Set-II

7. Final Varietal Trial (2019-20)

A field varietal trial was conducted to check performance of eight (08) sugarcane clones based on biometric performance and qualitative characteristics against two check varieties CPF 249 and HSF 240 at final selection stage of varietal development program of SRI, Faisalabad (Table-1.17). The experiment was laid out in RCBD with five repeats (2 for periodic juice analysis) having a net plot size of 4 m x 8.4 m. Planting was done on 19 February, 2019 using standard seeding rate of 50,000 TBS ha⁻¹ and recommended dose of fertilizer was applied @ 168-112-112 kg NPK ha⁻¹. Data on germination, tillering were recorded at 50 and 90 days after planting, respectively. The cane count and cane yield were recorded at harvesting. Juice analysis was done in Sugarcane Technology Laboratory, Sugarcane Research Institute, Faisalabad at fortnightly starting from November to March.

Data were analyzed statistically using Fisher analysis of variance technique and LSD test was employed to compare treatment means at 0.05 level of probability.

Data revealed that check clone HSF 240 exhibited highest cane yield compared to other clones while lowest was recorded for S2013 M-45. Whereas, maximum sugar contents was recorded for S2014 SL-1359 as against the lowest for S2012 M-1379. Out of eight clones, five (05) were rejected due to their susceptibility to red rot disease, poor crop stand & cane yield and low sugar contents, whereas three (03) were retained for further evaluation.

Clone	Germ. (%)	Tillers / plant	Millable canes (000/ha)	Cane yield (t/ ha)	Sugar contents (CCS%) Nov. to Feb.	Remarks
S2012 M-1379	49.8 ab	2.0 a	134 ab	123 ab	11.82	rejected due low sugar contents
S2013 M-45	51.6 a	1.89 a	89.7 d	101 b	12.0	rejected due less number of canes, cane yield & sugar contents
S2013 US-917	51.6 a	1.41 abc	104 bcd	130 ab	12.6	retained
S 2014 SL-1359	46.4 abc	1.73 ab	102 cd	123 ab	12.79	retained
S2014 SL-2200	38.3 d	0.95 c	133 ab	125 ab	12.64	retained
S2014 SL-2290	49.9 ab	1.18 bc	125 abc	122 ab	12.33	rejected due to red rot susceptibility
S2014 SL-2350	44.8 bc	0.99 c	121 bc	129 ab	11.94	rejected due to low sugar contents
S2014 SL-2477	33.9 d	1.20 bc	126 abc	108 b	12.49	rejected due to red rot susceptibility
CPF 249	50.2 ab	1.19 bc	127 abc	130 ab	12.77	check
HSF 240	44.2 c	1.83 a	153 a	139 a	12.22	check
LSD at 5%	5.4943	0.5901	30.386	29.377	-	

Table-1.17: Results of Final Varietal Trial

8-<u>National Uniform Varietal Yield Trial (1st Year) 2018-20</u>

The experiment was carried out to evaluate adaptability for growth, yield and qualitative performance of fourteen (14) sugarcane clones against check varieties; CPF 246 and CPF 249 ar SRI, Faisalabad (Table-1.18). The experiment was laid out in randomized complete block design with three replications. The trial was planted at 120 cm apart trenches in plots measuring 5m x 8.4m on 25 September 2018. All recommended agronomic practices were kept uniform for all experimental units. Observations on germination, tillering, cane count, cane girth, cane length, cane tonnage and sugar contents were recorded and analyzed by using statistical software STATISTIX 8.1. Data indicates that highest cane yield was noted for S96 SP-302 as against lowest was recorded for CPSG 2415. The highest cane yield for

S96 SP-32 was mainly attributed to better performance in climatic conditions of Faisalabad that resulted in good growth and yield-contributing characteristics like cane girth, cane length and cane weight. Whereas, maximum sugar contents was noticed for S2009 SA-111 as against lowest for Lam PTJ-76/803.

	~	Tillers	Cane				Sugar	Sugar
	Germ.	per	girth	length	Millable		contents	yield
CLONE	(%)	plant	(mm)	(cm)	cane	TCH	(CCS%)	(CCSt/ha)
VMC 87-599	49.7 bc	1.00 b	225 efg	23.6 bcd	84.5 d	96.7 cd	13.1	13.4 cd
			234					
S2009 SA-111	52.1 abc	1.19 ab	defg	24.2 bc	91.8 cd	103 cd	13.6	14.9 bcd
S96 SP-302	59.9 abc	0.98 b	258 bcd	28.7 a	103 bcd	150 a	12.0	19.3 ab
CPSG-2415	69.3 a	1.31 ab	221 fg	21.1 def	103 bcd	89.4 d	13.2	12.6 d
			233					
CPSG-2718	53.8 abc	1.06 ab	defg	25.9 ab	55.8 bcd	118 bcd	13.2	16.5 abcd
SLSG-1283	53.9 abc	1.23 ab	276 ab	19.8 ef	98.7 bcd	120 abcd	13.3	17.1 abcd
CPFG-14	63.8 ab	1.30 ab	289 a	22.6 cde	133 a	140 ab	13.3	19.7 a
				21.5				
CPFG-15	50.7 bc	1.34 ab	268 abc	cdef	104 bcd	114 bcd	13.4	16.2 abcd
			237					
CPFG-16	55.3 abc	1.20 ab	defg	21.0 def	118 ab	122 abc	13.3	17.2 abc
			-	22.1				
MH 91-CP-582	44.3 c	1.49 a	218 g	cdef	86.9 d	97.2 cd	13.4	13.8 cd
Lam PTJ-								
76/803	62.7 ab	1.36 ab	245 cdef	19.3 f	116 abc	107 cd	11.3	12.8 cd
			239					
CPTJ-349	59.2 abc	1.14 ab	defg	22.6 cde	84.5 d	100 cd	13.0	13.8 cd
CPTJ-1549	47.8 bc	1.27 ab	253 bcd	22.7 cd	97.9 bcd	119 abcd	13.1	16.7 abcd
			238					
Th-1510	42.8 c	1.00 b	defg	22.6 cde	94.6 bcd	111 bcd	12.1	14.2 cd
CPF 246			238	22.1				
(check)	59.7 abc	1.35 ab	defg	cdef	99.8 bcd	104 cd	13.5	14.9 bcd
CPF 249								
(check)	52.1 abc	1.48 a	248 cde	21.2 def	101 bcd	96.2 cd	13.4	13.7 cd
LSD Value	18.399	0.4353	25.789	2.8571	26.064	31.29	-	4.4857

1.18-<u>National Uniform Varietal Yield Trial (1st Year)</u> 2018-20

9- National Uniform Varietal Yield Trial (2nd Year) 2017-19

The experiment was carried out to evaluate growth, yield and quality performance of eight (08) sugarcane clones against two check varieties; CPF 249 and HSF 240 at SRI, Faisalabad (Table-1.19). The trial was laid out in randomized complete block design with three replications. The crop was planted at 120 cm apart trenches in plots measuring 6m x 4.8m on 18 September 2018. All experimental units were received recommended and uniform

Table-1.20 Data Summary of Zonal Trials(2018-2019)

agronomic practices. Data on germination, tillering, cane count, cane girth, cane length, cane tonnage and sugar contents were recorded and analyzed by using statistical software STATISTIX 8.1. The clone 2008 AUS-133 surpassed all other clones for cane yield as against lowest was exhibited by Th-1312. Highest cane yield for S2008 AUS-133 was due to better growth, taller & thick stalks and cane weight. Whereas, maximum sugar contents was associated with S2003 US-633 as compared to all other clones and minimum was recorded for Th-1312.

	Germ.	Tillers per	Cane girth	Cane length	Millable		Sugar contents	Sugar yield (CCS
CLONE	(%)	plant	(mm)	(cm)	cane	TCH	CCS(%)	t/ha)
S2002 US-133	67.1 a	1.15 de	261 c	24.3 ab	98.4 cd	116 bc	13.5	16.8 b
						98.6		
S2003 US-127	53.6 ab	1.18 cde	299 ab	22.3 bc	89.2 d	cd	13.7	14.4 bc
S2003 US-633	53.5 ab	1.73 a	254 cd	20.9 c	115 bc	103 cd	14.0	15.4 bc
S2005 US-54	59.4 ab	1.32 cd	268 bc	21.7 bc	104 cd	101 cd	13.0	13.9 c
S2008 M-42	52.4 abc	1.53 abc	225 de	22.7 bc	131 ab	110 bc	13.2	15.5 bc
S2008 M-133	57.8 ab	0.87 e	318 a	25.9 a	88.7 d	138 a	13.5	19.6 a
			243					
Th-1312	33.6 c	1.33 bcd	cde	26.1 a	66.3 e	88.4 d	11.8	11.1 d
Th-1412	54.9 ab	1.13 de	215 e	22.6 bc	97.2 cd	100 cd	13.3	14.2 bc
CPF 249						97.6		
(check)	43.9 bc	1.69 ab	266 c	22.7 bc	104 cd	cd	13.4	13.9 c
HSF 240								
(check)	66.7 a	1.34 bcd	270 bc	22.3 bc	138 a	125 ab	12.5	16.6 bc
LSD Value	18.809	0.3686	32.206	2.8746	20.417	20.697	-	2.7352

Table-1.19: National Uniform Varietal Yield Trial (2nd Year) 2017-19

10. ZONAL VARIETAL TRIALS

Zonal trials were conducted at 9 locations of Punjab, 04 at Southern Punjab, 3 at Central Punjab and 2 at Northern Punjab. The performance of thirteen varieties were to be tested. The variety CPF-251 gave the best performance in Southern Punjab and gave yield of 124 t/ha with sugar recovery of 13.49% (Table-1.20). S2005-US-54 gave the maximum yield of 118 t/ha in Central Punjab. CPF-249 gave maximum yield of 119 t/ha with 12.78% sugar recovery.

			n Punjab ations)		l Punjab ations)	Northern Punjab (2-locations)		
S.No	Name of Varieties	Cane Yield (t/ha)	Sugar Recovery %	Cane yield (t/ha)	Sugar recovery %	Cane Yield (t/ha)	Sugar recovery %	
1	S2008-AUS-133	96.00	12.99	-	-	101.00	10.94	
2	S2008-M-42	72.50	10.80	84.66	11.02	84.00	10.28	
3	S2009-SA-111	80.50	12.08	93.33	11.57	88.67	12.05	
4	S2005-US-54	110.00	11.91	118.00	9.61	83.50	11.65	
5	VMC-87-599	75.50	10.50	114.33	10.97	102.83	12.24	
6	CPF-246	91.00	11.03	87.00	11.36	91.67	10.34	
7	CPF-247	98.33	12.30	96	12.14	96.50	12.78	
8	CPF-248	87.50	11.95	103.33	12.25	85.63	12.29	
9	CPF-249	98.33	12.48	106.66	12.50	119.00	12.78	
10	CPF-250	100.50	11.66	-	-	85.00	12.61	
11	CPF-251	124.00	13.49	-	-	103.00	13.08	
12	CPF-252	96.00	11.01	-	-	-	-	
13	CPF-253	119.25	12.45	122.89	12.73	116.66	13.26	

11. INTRODUCTION AND MAINTENANCE OF GENE POOL

Introduction, a breeding technique which is used to increase and to expand the already available germ-plasm. During 2018-19, 422 varieties included in the experiment were sown as fresh crop. A list of the countries from which gene pool belongs is presented in the table-1.21 given below:

 Table-1.21: List of Countries

Country	Nos.	Country	Nos.
Australia	9	Mauritius	01
Bangladesh	3	Mexico	09
Brazil	13	Pakistan	128
China	02	Taiwan	02
India	11	U.S.A.	113
Indonesia	01	Gen pool from	
West Indies	23	Murree	<u>107</u>
(Barbados)			
		Total:	422

13. TAXONOMIC CLASSIFICATION OF CANE VARIETIES/CLONES

To identify new sugarcane varieties/lines, nine (09) entries were studied taxonomically. Ten (10) matured plants were selected randomly from each variety. Number of mill able canes regarding each plot was recorded. One healthy cane from each selected plant was taken out to study other characteristics. Qualitative characters were recorded by visual observations and quantitative characters were recorded by measuring the characters; whereas brix %age was recorded by hand refrecto-meter and then average was calculated.

New sugarcane varieties / lines were studied taxonomically during 2018-19. Detailed taxonomy of the above varieties is shown in the Table-1.22.

TAXONOMIC CLASSIFICATION OF SUGARCANE VARIETIES

	1	2	3	4	5	6	7	8	9	10	11
CHARACTER	M-42	PSR-07-45	SL-426	M-45	M-1379	US-917	SL-1359	SL-2200	SL-2290	SL-2350	SL-2477
1. PLANT											
Height at maturity (cm)	460	443.25	461	444	408	436	433	404	388	429	393
Growth Habit	Semi Erect	Semi Erect	Semi Erect	Semi Erect	Semi Erect	Semi Erect	Semi Erect	Semi Erect	Semi Erect	Semi Erect	Semi Erect
Tillering	4	4	4	5	5	5	7	6	6	10	9
Stooling	4	4	4	5	5	5	7	6	6	10	9
Tops	Medium	Medium	Light	Light	Medium	Medium	Medium	Light	Medium	Medium	Medium
Trash	Loose	Loose	Clinging	Loose	Clinging	Clinging	Loose	Loose	Loose	Loose	Loose
2. LEAF											
No. of Leaves/Plant	25.75	29.00	26.50	33.25	32.00	24.25	29.75	28.25	23.25	29.00	30.00
Length (cm)	182.50	161.25	141.25	177.75	164.50	146.50	146.75	145.50	153.50	144.00	133.00
Width (cm)	4.77	4.27	3.45	4.37	3.52	4.07	4.15	3.87	4.57	4.4	4.5
Colour	Green	Green	Green	Green	Green	Green	Green	Green	Green	Green	Green
Attitude	Erect	Semi Erect	Semi Erect	Semi Erect	Semi Erect	Semi Erect	Semi Erect	Semi Erect	Semi Erect	Semi Erect	Semi Erect
Surface	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain
Margins	Serrated	Serrated	Serrated	Serrated	Serrated	Serrated	Serrated	Serrated	Serrated	Serrated	Serrated
Ligule	Deltoid	Deltoid	Crescent	Crescent	Crescent	Crescent	Deltoid	Deltoid	Deltoid	Deltoid	Deltoid
Auricle	Absent	Absent	Absent	Present	Absent	Present	Absent	Absent	Present	Long Lonceabl	Long Lonceabl
3. SHEATH											
Length	31.75	26.5	30.25	33.75	29.13	30	31	32	33	34.00	35.00
Spines	Present	Absent	Absent	Absent	Absent	Absent	Absent	Present	Present	Present	Absent
Clasping	Clasping	Clasping	Clasping	Clasping	Clasping	Clasping	Clasping	Clasping	Clasping	Clasping	Clasping
Trashing	Loose	Loose	Clinging	Loose	Loose	Clinging	Loose	Loose	Loose	Loose	Loose
Colour	Light Green	Green	Green	Light Green	Green	Green	Purple	Purple	Purple	Green	Green

		1	1					1	1	1	
Pubescence	Present	Absent	Absent	Present	Absent	Absent	Absent	Present	Present	Present	Absent
Anthocyanin	Absent	Present	Absent	Present	Absent	Present	Present	Present	Present	Present	Absent
Wax	Absent	Absent	Present	Absent	Present	Absent	Absent	Present	Present	Present	Present
Ligule Size	Small	Large	Large	Large	Large	Small	Small	Small	Small	Small	Small
Auricle Size	Small	Large	Large	Long	Large	Small			Long	Long	Long
Auricle Shape	Small	Large	Large	Lanceolate	Large	Small			Long Lan		
Dewlap Colour	Light Green	Light Green	Light Green	Light Green	Green	Green	Green	Green	Green	Light Green	Green
Dewlap Shape	Deltoid	Deltoid	Deltoid	Deltoid	Deltoid	Deltoid	Deltoid	Deltoid	Deltoid	Deltoid	Deltoid
Dewlap Wax	Present	Absent	Absent	Absent	Present	Present	Absent	Absent	Absent	Present	Absent
4. CANE											
Cane	2.40	2.43	2.92	2.21	2.25	2.55	2.32	2.31	2.02	2.32	2.38
Thickness (cm)	2.70	2.45	1.82	2.60	2.25	2.33	2.23	2.29	2.46	2.91	2.58
	1	2	3	4	5	6	7	8	9	10	11
CHARACTER	M-42	PSR-07-45	SL-426	M-45	M-1379	US-917	SL-1359	SL-2200	SL-2290	SL-2350	SL-2477
Colour (Exposed)	Greenish Yellow	Greenish Yellow	Greenish	Greenish	Greenish	Yellowish Green	Yellowish	Greenish	Greenish Yellow	Purple	Green
Colour	Yellowish	Greenish	Yellowish	Greenish	Greenish	Greenish	Greenish	Greenish	Yellowish	Purplish	Greenish
(Unexposed)				Yellow		Yellow	Yellow			Green	Yellow
Cane Hardness	Soft	Soft	Hard	Hard	Hard	Soft	Medium	Soft	Soft	Hard	Soft
Internode Length (cm)	16.15	15.50	11.57	11.66	11.80					12.00	12.00
Internode Diameter (cm)	2.70	2.45	1.82	2.20	2.42					2.91	2.58
Shape	Cylindrical	Cylindrical	Cylindrical	Bobbin	Cylindrical	Cylindrical	Bobbin	Tumescent	Bobbin	Bobbin	Cylindrical
Position	Zigzag	Zigzag	Zigzag	Zigzag	Zigzag	Zigzag	Zigzag	Zigzag	Zigzag	Zigzag	Zigzag
Wax	Present	Present	Absent	Absent	Present	Present	Present	Present	Present	Present	Present
Splits	Present	Absent	Absent	Present	Absent	Absent	Absent	Absent	Absent	Absent	Present
Streaks	Absent	Absent	Absent	Present	Present	Absent	Absent	Absent	Absent	Absent	Absent
Pith	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
Flesh Colour	Whitish	Whitish	Whitish	Greenish	Greenish	Whitish	Greenish	Whitish	Whitish	Whitish	Whitish

5. INTERNODE											
Length (cm)	16.15	15.50	11.57	11.66	11.80	18.40	15.60	12.90	12.60	12.00	12.00
Diameter (cm)	2.70	2.45	1.82	2.20	2.42	2.37	1.91	2.26	2.26	2.91	2.58
Shape	Cylindrical	Cylindrical	Cylindrical	Bobbin	Cylindrical	Cylindrical	Bobbin	Tumescent	Bobbin	Bobbin	Cylindrical
Splits	Present	Absent	Absent	Present	Absent	Present	Absent	Absent	Absent	Absent	Present
Depth of Splits	Shallow	Absent	Absent	Shallow	Absent	Absent	Absent	Absent	Absent	Absent	Shallow
Ivory Marking	Present	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
6. Bud											
Bud Grove	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
Bud Shape	Round	Round	Round	Ovate	Pointed	Round	Round	Ovate	Round	Pointed	Round
Position										Above	At Scar
										Growthrin	
										g	
Weather Marking	Absent	Absent	Absent	Absent	Present	Absent	Absent	Absent	Absent		
Groove Depth	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
Colour	Yellow	Yellow	Yellow	Yellow	Yellow	Yellow	Yellow	Yellow	Yellow	Green	Green
Base	At Scar	At Scar	At Scar	At Scar	At Scar	At Scar	Above Scar	Above Scar	At Scar	At Scar	At Scar
Growth Ring	Even	Swollen	Swollen	Swollen	Swollen	Swollen	Swollen	Swollen	Swollen	Even	Swollen
Shape											
Root Band Rows	2	2	2	2	2	2	2	2	2	2	2
Root Band Width	6.00	9.00	7.00	6.00	8.75	6.50	6.50	10.00	9.75	11.00	11.00
(mm)											
Colour (Exposed)	Yellow	Yellow	Yellow	Greenish	Greenish	Green	Yellow	Yellow	Yellow	Purple	Green
Colour	Yellowish	Yellowish	Yellowish	Greenish	Yellow	Yellow	Yellowish	Yellow	Yellow		
(Unexposed)	Green	Green					Green				
Flowering	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
Lodging	Low	Absent	Low	Absent	Absent	Present	Absent	Absent	Absent	Absent	Absent

1. <u>COMPARATIVE PERFORMANCE OF PROMISING CLONES/ VARIETIES</u>

The experiment comprising of thirteen sugarcane clones / varieties was laid out in randomized complete block design during spring, 2019 at research area of Sugarcane research institute, Faisalabad. The plot size of experiment was $4m \times 8.4$ m and replicated thrice. The data in Table-2.1 depicts that all clones have statistically significant affects regarding germination, tiller / plant, no of canes, cane yield, sugar yield and commercial cane sugar. Highest germination of 51.67% was obtained in S2008-AUS-133 which was closely followed by CPF-253, CPF-250 and SP-93.

Maximum number of cane 107 thousand per ha was observed in SA-111. While the lowest number of canes were found in CPF-251. As regarding cane and sugar yield, CPF-252 produced highest cane yield (102.67 t. ha⁻¹) and HSF-240 produced highest sugar yield (13.26 t. ha⁻¹) followed by CPF-252 (13.05 t.ha⁻¹). whereas, CPF-251 gave maximum commercial cane sugar of 14.35 % followed by CPF-250 with CCS of 13.85%.

S. No.	Variety	Germination %	Tiller / plant	No. of canes/ha	Cane yield	Sugar yield	CCS %
V1	S2003-US-778	40.67 c	1.90 bc	(Thous.) 96.33 c	t/ ha 86 e	t/ha 11.14 ef	12.96 g
V2							Ű
	CPF-253	50.33 ab	2.10 a	65 h	95.33 c	11.46 d	12.02 j
V3	CPF-250	51 a	1.88 bcd	63.67 h	90 d	12.46 b	13.85 b
V4	CPF-251	49 b	1.78 cd	53.67 i	73 g	10.47 g	14.35 a
V5	CPF-252	49 b	2.10 a	85 de	102.67 a	13.05 a	12.71 h
V6	SA -111	41 d	2.10 a	107.33 a	79 f	10.89 f	13.79 c
V7	S2008 AUS-130	47 c	1.88 bcd	87 d	86 e	11.84 c	13.77 c
V8	S2008-AUS-133	51.67 a	1.47 e	71 g	80.33 f	9.38 i	11.691
V9	CPF-249	46.67 c	1.47 e	84.67 e	79.67 f	9.92 h	12.46 i
V10	SP 93	50.33 ab	1.75 cd	95.33 c	84 e	11.31 de	13.46 e
V11	VMC-87/599	45.67 c	2.00 a	82 f	94.33 c	11.08 ef	11.74 k
V12	PSR 07-45	45.67 c	1.72 d	95 c	79.67 f	10.42 g	13.08 f
V13	HSF-240	51 a	1.83 cd	99 b	98 b	13.26 a	13.53 d
	<u>LSD 5%</u>	1.966	0.168	2.23	2.12	0.277	0.037

2. <u>PERFORMANCE OF PROMISING SUGARCANE VARIETIES AT</u> <u>DIFFERENT PLANT POPULATIONS</u>

A research experiment comprising of three seed rates and five sugarcane clones / varieties was laid out in randomized complete block design with split plot arrangement during spring, 2019 at research area of Sugarcane Research Institute, Faisalabad to find out the best seed rate for promising sugarcane clones. The plot size of experiment was maintained as $4 \text{ m} \times 8.4 \text{ m}$ and treatment were replicated thrice. The treatments included three seed rates viz. 35000, 50000, 65000 TBS per ha and five sugarcane clones viz. CPF-250, CPF-251, CPF-253, S2008-AUS-133, HSF-240. The data in Table-2.2 depicted that highest germination (54%) was found in S2008-AUS-133 at seed rate of 65000 TBS per ha followed by 53.67% in CPF-253, 51.67% in HSF-240 & S2006-AUS-133 respectively. The sugarcane clones CPF-253, when sown at 50000 TBS produced highest number of canes (107.33 thousand ha⁻¹). The data depicts the differential behavior of the clones with respect to total no. of millable canes at all seeding rates and lowest no. of canes were noted at 35,000 TBS ha⁻¹ in all clones. CPF-250, CPF-253, HSF-240 produced higher number of canes at 50,000 TBS ha⁻¹ than other seed rates while going toward higher seed rates (65,000 TBS ha⁻¹) also showed lower No. of millable cane. While S2008-AUS-133 and CPF-251 produced 95 and 88.33 thousand per ha at 65000 TBS plant populations.

Sugarcane clone CPF-253 produced highest cane and sugar yield ((105.67 t. ha⁻¹, 12.81 t. ha⁻¹) respectively at 50000 TBS ha⁻¹ while CPF-250 produced sugar yield of 12.09 t. ha⁻¹ at 50000 and 65000 TBS respectively. The sugarcane clones did not respond well at low seed rate (35000 TBS) regarding cane and sugar yield. Commercial cane sugar was statistically non-significant. However highest commercial cane sugar was found in CPF-251 with 12.73%.

Variety	Seed Rate	Germination %	Tiller / plant	No. of canes/ha	Cane yield t/ ha	Sugar yield t/ha	CCS %
CPF 253	35000	38.33 ef	1.90 bc	70 g	72.67 f	9.20 fg	12.65
CPF 250	35000	38.33 ef	1.65 fg	65 h	67.67 g	8.41 g	12.44
CPF 251	35000	38 f	1.57 gh	63.67 h	59 h	7.48 h	12.73
S2008-AUS-133	35000	34.67 g	1.40 j	53.67 i	57.33 h	7.11 h	12.40
HSF-240	35000	41 e	1.49 hij	78.67 f	79.67 e	9.92 ef	12.45
CPF 253	50000	53.67 ab	2.10 a	107.33 a	105.67 a	12.81 a	12.13
CPF 250	50000	50.33 b	1.88 cd	97.33 bc	96.67 bc	12.09 ab	12.52
CPF 251	50000	49 bc	1.78 de	88.67 d	81.33 e	10.13cd	12.45

 Table-2.2
 PERFORMANCE OF PROMISING SUGARCANE VARIETIES AT DIFFERENT PLANT POPULATIONS

S2008-AUS-133	50000	51.67 ab	1.47 ij	84.67 e	90 d	11.07 cd	12.30
HSF-240	50000	51.67 ab	1.75 ef	95.33 bc	94 c	10.92 cd	11.62
CPF 253	65000	45.67 d	2.0 ab	97.67 b	96 bc	11.75 bc	12.26
CPF 250	65000	46 d	1.72 ef	95 c	97.67 bc	12.09 ab	12.39
CPF 251	65000	49.67 bc	1.60 gh	84.33 e	78.33 e	9.79 fg	12.50
S2008-AUS-133	65000	54 a	1.55 ghi	88.33 d	96 bc	11.21 bc	11.67
HSF-240	65000	47 cd	1.54 ghi	86 de	87 d	10.36 de	11.90
	<u>LSD 5%</u>	2.81	0.104	2.59	3.52	0.93	N.S.

3. <u>STUDY OF BUD CHIPS PLANTING IN SUGARCANE</u>

The experiment comprising of thirteen sugarcane clones / varieties was laid out in randomized complete block design during spring, 2019 at research area of Sugarcane research institute, Faisalabad. The plot size of experiment was $4m \times 8.4$ m and replicated thrice. The treatments included three seed types and four planting times. Sugarcane bud chips were made by using bud-chipper machine and sown in seedling trays on 20^{th} February, 2019 and after emergence, were shifted to the field on 15^{th} march, 1^{st} April, 15^{th} April and 1^{st} May respectively. At the same time, triple and single budded setts were also sown directly in field.

The data in table-2.3 depicts that the treatment has showed significant effects on germination, tiller / plant, no of canes, cane yield, sugar yield and commercial cane sugar. Maximum germination (58%) was observed in raised bud chips seedling transplanted on 15th March followed by 1st April. Triple budded setts planted on 15th March and 1st April showed 41.5% and 26% germination. Highest tiller per plant (3.69 and 3.65) were obtained in raised bud chips seedling transplanted on 1st April and 15th March respectively, whereas lowest number of tillers per plant (1.48) was observed in Planting of bud chips in field on 1st May. Highest number of canes (83.75 thousand), cane yield (82 t. ha⁻¹) and sugar yield (9.11 t. ha⁻¹) was obtained in triple budded setts planted on 15th March. Commercial cane sugar was also found significant and maximum of 11.11% was obtained in triple budded setts planted on 15th March.

Sowing time	Seed type	Germination %	Tiller / plant	No. of canes/ha (Thousand)	Cane yield t/ ha	Sugar yield t/ha	CCS %
	Raised bud chips seedling	58 a	3.65 a	61 d	68 bc	7.49 b	11.03 a
15-Mar	Planting of bud chips in field	35.75 de	2.95 b	59.5 de	66 c	7.31 bc	11.08 a
	Triple budded Setts	41.5 c	1.86 e	83.75 a	82 a	9.11 a	11.11 a

 Table-2.3
 STUDY BUD CHIPS PLANTING IN SUGARCANE

	Raised bud chips seedling	56.75 a	3.69 a	59.75 d	65.5 cd	7.15 c	10.92 ab
1-Apr	Planting of bud chips in field	32.5 ef	2.61 cd	56 e	62.25 e	6.78 d	10.89 abc
	Triple budded Setts	26 g	1.59 ef	80.25 b	80.75 a	8.83 a	10.92 ab
	Raised bud chips seedling	46.5 b	2.85 bc	52.25 f	55.75 fg	5.96 e	10.68 cd
15-Apr	Planting of bud chips in field	32 f	2.51 d	57.25 e	58.5 f	6.25 e	10.67 d
	Triple budded Setts	39 cd	1.58 f	67.5 c	70 b	7.49 b	10.70 bcd
	Raised bud chips seedling	36.5 de	1.49 f	50.5 g	54.75 g	5.30 f	9.68 e
1-May	Planting of bud chips in field	31.75 f	1.48 f	50.25 g	51 h	4.95 g	9.70 e
	Triple budded Setts	32.25 ef	1.53 f	65.75 c	63 de	6.14 e	9.74 e
	LSD: 0.05	3.44	0.278	2.08	2.814	0.303	0.219

4. <u>PERFORMANCE OF SUGARCANE CLONES AT VARIOUS PLANTING</u> <u>TIMES</u>

The experiment comprised of seven sugarcane planting dates viz. 15^{th} August, 15^{th} September, 15^{th} October, 2018, 15^{th} February, 15^{th} March & 15^{th} April during 2019, was laid out in randomized complete block design during 2018-2019 at research area of Sugarcane Research Institute, Faisalabad. The plot size of experiment was $5 \text{ m} \times 8.4 \text{ m}$ and replicated thrice. Sugarcane variety HSF-240 was used as test variety. The data in table-2.4 depicted that all sowing dates have statistically significant effects on germination, tiller / plant, no of canes, cane & sugar yield and commercial cane sugar. Maximum germination (50.63%) was obtained in 15^{th} September, sowing followed by 15^{th} August (48.93%) and 15 October (48.52%). Lowest germination (34.07%) was found in 15^{th} April sowing date. Among spring planting dates, mid-February planting gave maximum germination (48.33%) followed by mid-March (45.85%). Yield contributing factors were improved by the length of crop growth period.

The highest number of canes (88 thousand), cane yield (92.33 t. ha⁻¹), sugar yield (11.73 t. ha⁻¹) were attained in 15 September planting of sugarcane crop followed by 15th October. Among spring planting dates, February planted crop gave maximum number of canes (79 thousand), cane yield (77 t ha⁻¹), sugar yield (7.34 t. ha⁻¹) followed by 15th March. Maximum CCS (12.72%) was attained in 15th August planted crop followed by 15th September &15 October.

Planting Time	Germination %	Tiller / plant	No. of canes/ha	Cane yield t/ ha	Sugar yield t/ha	CCS %
15-Aug 2018	48.93 a	2.32 a	77.33 c	80.33 c	10.21 ab	12.72 a
15-Sep 2018	50.63 a	2.27 ab	88 a	92.33 a	11.73 a	12.71 a
15-Oct 2018	48.52 ab	1.57 c	83 b	85 b	10.44 ab	12.29 a
15-Jan 2019	38.15 c	2.21 ab	76.67 c	73.33 e	8.64 c	11.79 a
15-Feb 2019	48.33 ab	2.40 a	79 с	77 d	9.04 bc	11.75 a
15-Mar 2019	45.85 b	2.02 b	72.33 d	66.67 f	7.34 c	11.01 a
15-Apr 2019	34.07 d	1.30 c	50.67 e	50.33 g	5.34 d	10.61 b
<u>LSD 5%</u>	3.0	0.30	3.51	2.86	1.82	2.72

Table-2.4 <u>PERFORMANCE OF SUGARCANE CLONES AT VARIOUS PLANTING</u> TIMES

5. <u>EFFECT OF DIFFERENT IRRIGATION REGIMES / LEVELS AND</u> <u>PLANTING METHODS ON YIELD AND QUALITY OF SUGARCANE.</u>

The experiment was carried out in RCBD (split plot arrangement). The main factor was irrigation levels (main plats) while second factor was sowing methods (Sub-Plots). The net plot size was 10m X 9.6m having 3 replications. The sugarcane variety HSF-240 was used. All other agronomic practices were kept normal. It is obvious from the table-2.5 that the sugarcane (HSF-240) gave the maximum yield of 118.75 t/ha at irrigation level of 1.0 Co- efficient than irrigation level of 0.8 co efficient (113.54 t/ha). The Rumber planting (S3) gave the maximum cane yield of 124.3t/ha which was closely followed by the other sowing methods. The maximum cane yield of 1.0 Coefficient than other methods of sowing.

Table-2.5EFFECT OF DIFFERENT IRRIGATION REGIMES / LEVELS AND
PLANTING METHODS ON YIELD AND QUALITY OF
SUGARCANE.

Treatment	Germination (%)	Tillers/ plant	Cane account (000/ha)	Cane yield (t/ha)	Sugar recovery (%)	Sugar yield (t/ha)
A-Irrigation levels						
I1=1.0 CO-efficient	48.75	1.33	131.08	118.75 A	12.17	14.45
I2=0.8 CO-efficient	49.50	1.36	131.25	113.54 B	12.40	14.08
LSD=0.05	NS	NS	NS	0.3189	NS	NS
B=planting methods						
S_1 = Trench Planting	48.50 A	1.27 BC	124.50	116.32 A	12.60 A	14.64 A
$S_2 = Up$ -Hill Planting	42.50 C	1.10 C	127.33	106.25 B	12.03 B	12.79 B
S_3 = Ramber Planting	55.00 B	1.54 A	130.33	124.30 A	11.98 B	14.87 A
$S_4 = Pit Planting$	50.50 B	1.46 AB	142.50	117.70 A	12.53 A	14.76 A
LSD= 0.05	2.3979	0.0927	NS	4.4639	0.2169	0.6036
	A-Irriga	ation levels x B	=Planting m	nethods		
$I_1 x S_1$	48 CD	1.25 AB	129.67	118.06 AB	12.48	14.74
$I_1 x S_2$	43 DE	1.00 B	119.33	107.64 BC	11.97	12.87
$I_1 x S_3$	54 AB	1.58 A	143.00	128.47 A	11.67	15.00
$I_1 x S_4$	50 BC	1.50 A	132.33	120.83 AB	12.57	15.20
$I_2 x S_1$	49 BC	1.30 AB	119.33	114.58 BC	12.73	14.56
$I_2 x S_2$	42 E	1.22 AB	135.33	104.86 C	12.10	12.72
I ₂ xS ₃	56 A	1.50 A	142.00	120.13 AB	12.29	14.76
$I_2 x S_4$	51 ABC	1.43 AB	128.33	114.58 BC	12.50	14.32
LSD=0.05	2.3979	0.1311	NS	6.3129	NS	NS

6. <u>PERFORMANCE OF SUGARCANE CLONES/ VARIETIES AT VARIOUS</u> <u>IRRIGATION LEVELS / REGIMES</u>

The experiment was laid out in factorial RCBD (Split plot arrangement) having two factors; A- Irrigation levels of 1.0, 0.8 & 0.6 coefficient (Main plots) & B- varieties V1- CPF-253 and V2- CPF-252 (Sub plots). All other agronomic practices were kept normal. It is obvious from the Table-2.6 that Irrigation level of 1.0 coefficient / gave the maximum cane yield of 126.33 t/ha. The variety CPF-253 gave the maximum cane yield of 127.78 t/ha than other variety CPF-252 giving cane yield of 121.44 t/ha significantly. CPF-253 (VI) gave the maximum cane yield of 131.33 t/ha with I irrigation level of 1.0 coefficient. The minimum yield of 115.33 t/ha statistically was given by CPF -252 (V2) at irrigation level of 0.6 Coefficient.

Table-2.7: Economic assessment of various canola planting techniques in sugarcane.

45

Table-2.6PERFORMANCEOFSUGARCANECLONES/VARIETIESATVARIOUSIRRIGATION LEVELS / REGIMES

Treatment	Germination (%)	Tillers/ plant	Cane account (000/ha)	Cane yield (t/ha)	Sugar recovery (%)	Sugar yield (t/ha)
A-Irrigation levels						
I ₁ =1.0 CO-efficient	48.17	1.58	95.33 A	126.33	12.64	15.38
I ₂ =0.8 CO-efficient	49.50	1.76	87.50 B	125.33	12.52	14.83
I ₃ =0.6 CO-efficient	47.00	1.69	93.33 AB	122.17	12.51	14.12
LSD=0.05	NS	NS	2.4133	NS	NS	NS
B =varieties						
V ₁ =CPF-253	49.00	1.69	98.22 A	127.78 A	12.81 A	16.09 A
$V_2 = CPF-252$	47.00	1.66	85.89 B	121.44 B	12.30 B	13.46 B
LSD= 0.05	NS	NS	3.8522	2.5580	0.1971	0.4766
	A-I	rrigation le	vels x B=Va	rieties		
$I_1 x V_1$	53.67 AB	1.77 AB	103.33	131.33 A	13.29 A	17.39 A
I ₁ x V ₂	43.67 C	1.43 BC	88.67	123.00 AB	11.82 B	14.53 BC
$I_2 x V_1$	49.67 B	1.89 A	102.67	129.00 A	13.37A	16.34 AB
$I_2 x V_2$	42.67 C	1.40 BC	87.33	121.33 AB	12.03 B	13.37 CD
$I_3 X V_1$	55.33 A	2.10 A	86.33	127.67 AB	13.23 A	15.12 BC
$I_3 x V_2$	44.33 C	1.50 BC	84	115.33 B	11.66 B	11.89 D
LSD=0.05	1.5153	0.1313	NS	4.4305	0.3415	0.8255

7- CANOLA INTER CROPING IN SUGARCANE

The Sugarcane was sown at 2.5 ft. and 4.0 ft. apart rows in in Autumn season (September). The canola was inter cropped in sugarcane as per treatment. The experiment was laid out in RCBD with 3 repeats having plot size of 10mx 8.4m. All other agronomic practices were kept normal. It is obvious from the data Table-2.7 that the sugarcane 4 ft. apart sown with 2 lines of canola on each ridge gave the maximum net income of Rs. 345210 with BCR of 1.93.

Treatments	Sugar- cane yield (t/ha)	Canola yield (t / ha)	Sugarc- ane Income Rs.	Canola Income Rs.	Total income Rs.	Cost of production of sugarcane Rs.	Cost of protection of canola Rs.	Total cost Rs.	Net income Rs.	BCR
T1 sugarcane apart 2.5ft rows +broad cast of canola	49.5	2.35	222750	131600	354350	175000	4000	179000	175350	0.98
T2 sugarcane apart 2.5ft rows +1 line of canola	60.9	1.36	274050	76160	350210	175000	4000	179000	171210	0.95
T3 canola alone	-	1.92	-	107520	107520	-	24680	24680	82840	3.35
T4 sugarcane apart 4ft rows +broad cast of canola	83.0	1.98	373500	110880	484380	175000	4000	179000	305380	1.71
T5 sugarcane apart 4ft rows +1 line of canola	79.4	1.06	357300	59360	416660	175000	4000	179000	237660	1.33
T6 sugarcane apart 4ft rows +2 line of canola	103.3	1.06	464850	59360	524210	175000	4000	179000	345210	1.93
T7 sugarcane alone	95.8	-	431100	-	431100	175000	-	175000	256100	1.46

Sugarcane @ Rs.180/40Kg Canola @ Rs. 56/Kg

8- EFFECT OF FARM YARD MANURE ON FERTILIZER USE EFFICIENCY

A field trial was conducted to evaluate impact of farmyard manure and fertilizer on soil fertility and sugarcane yield. The experiment was laid out in RCBD with split plot arrangements. The treatments were comprised of Farm Yard Manure application (Main plot) i.e. T1= Control (No application FYM), T2= FYM applied one month prior to sowing) and T3= FYM applied at sowing and **Fertilizer doses (sub plot)** i.e. F1= 168:112:112 kg NPK (Rec), F2= 200:150:150 kg NPK and F3= 138:72:72 NPK kg/ha. The results (Table-2.8) revealed that fertilizer dose of F2= 200:150:150 gave statistically the highest **germination** (**58** %), tillers per plant (2.11), cane yield (120 t/ha) and sugar recovery (13.37 %) when farmyard manure applied one month prior to sowing (T₂). On the other hand, the lowest cane yield (76 t/ha) was recorded in F2= 200:150:150 NPK kg/ha when farmyard manure applied at the time of sowing (T₃).

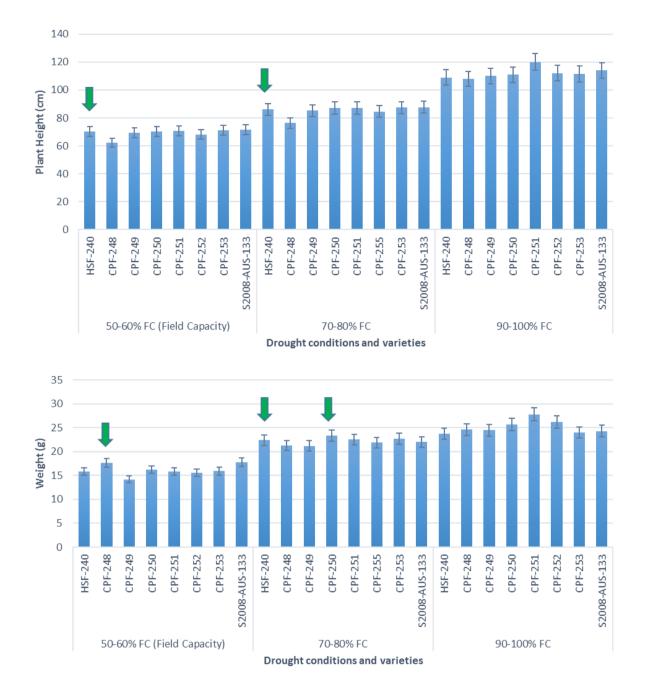

Farm Yard	Fertilizer	Germination	Tillers/Plant	Cane Yield	S. Rec. (%)
Manure	doses kg/ha	(%)		(t/ha)	
	NPK				
Control (No	168-112-112	47 BC	1.52 D	100 C	13.14 A
application FYM)	200:150:150	53 B	1.75 BC	88 D	12.26 ABC
	138:72:72	52 B	1.90 AB	84 D	13.04 A
FYM applied one	168-112-112	51 B	1.41 D	118 A	13.15 A
month prior to	200:150:150	58 A	2.11 A	120 A	13.37 A
sowing)			2.11 A		
	138:72:72	49 BC	1.05 E	102 BC	11.74 BC
FYM applied at	168-112-112	45 C	1.58 CD	106 B	12.46 AB
sowing	200:150:150	49 BC	1.45 D	76 E	11.17 C
	138:72:72	52 B	1.73 BC	87 D	11.15 C
LSD 5%		5.75	0.26	5.41	1.2750

 Table-2.8
 EFFECT OF FARM YARD MANURE ON FERTILIZER USE

 EFFICIENCY

9- SCREENING OF DROUGHT TOLERANT SUGARCANE VARIETIES/CLONES

The current study was conducted to screen out drought tolerant varieties/clones. Eight sugarcane varieties/clones were exposed with three different drought conditions i.e. 50-60% FC (Field Capacity), 70-80% FC, 90-100% FC. The experiment was layout under CRD (Factorial). Sugarcane buds were sown in soil filled pots and drought conditions were created in pots. The results (Fig-2.1) revealed that sugarcane variety HSF-240 and CPF-248 gave the maximum plant height (cm) and dry weight (g) at 50-60% FC respectively. Whereas, the maximum plant height (cm) and dry weight (g) were recorded for variety HSF-240. Overall results showed that sugarcane variety HSF-240 might have drought tolerance character.

<u>10- EFFECT OF VARIOUS SOURCES OF NPK FERTILIZERS ON SOIL</u> <u>FERTILITY AND SUGARCANE CROP</u>

The current study was planned to evaluate impact of various NPK fertilizers on sugarcane yield. The experiment was laid out in RCBD under split split plot followed by three replications. The results of the experiment revealed that statistically significant differences were observed in case of various nitrogenous fertilizer application. Whereas Phosphorous and potassium sources showed non-significant difference. Urea application enhances germination percentage and cane yield (t/ha) as compared to other sources. The interaction was also found non-significant.

Fertilizer	Germination	Tillers/Plant	Cane Yield (t/ha)	CCS (%)
Sources	(%)			
SOP	65.38	2.12	118.12	12.81
MOP	65.21	2.13	117.98	12.80
LSD 5%	NS	NS	NS	NS
Urea	67.12 A	2.14 C	122.1 A	12.48
CAN	65.55 B	2.18 B	118.2 B	12.51
AS	65.36 B	2.23 A	116.4 B	12.45
LSD 5%	1.01	0.02	3.9	NS
DAP	67.48	2.15	121.30	12.62
SSP	65.91	2.13	122.01	12.57
TSP	66.81	2.11	121.26	12.61
NP	66.71	2.13	120.5	12.49
LSD 5%	NS	NS	NS	NS
Interaction	NS	NS	NS	NS

Table-2.9EFFECT OF VARIOUS SOURCES OF NPK FERTILIZERS ON SOIL
FERTILITY AND SUGARCANE CROP

11- EFFECT OF INCREASED AND LATE APPLICATION OF FERTILIZERS ON SUGARCANE AND SOIL PROPERTIES

The experiment was planned to assess the effects of late addition of NPK fertilizer on nutrients uptake and sugarcane yield. The experiment was laid out in RCBD under split plot arrangement. The time of application was kept in main plots and doses of fertilizer kept in sub-plots. The results (Table-2.10) of experiment revealed that there were statistically significant differences among all treatments. Late application of fertilizer doses cause reduction in germination (%), tillers/plant, cane yield (t/ha) and sugar recovery (%). The increased dose of fertilizer applied at recommended time gave maximum net return in terms of yield. Timely application of Phosphorous is better than applied in late months (October/November).

Table-2.10PREVIOUS YEARS RESULTS:

III IIII OODII					
Time of	N Rates and	Germination	Tillers/Plant	Cane Yield	CCS (%)
Application	PK (kg/ha)	(%)		(t/ha)	
Timely	168-112-112	75.88 a	1.43 bc	116.05 de	11.99 c
Application	200-112-112	75.13 a	1.68 b	137.73 b	11.45 d
(Recommended)	250-112-112	76.55 a	2.19 a	148.57 a	13.82 a
Late August-	168-112-112	61.88 c	2.10 a	129.00 c	12.70 b
Early	200-112-112	64.78 b	1.75 b	120.80 d	12.75 b
September	250-112-112	56.11 de	1.37 d	119.10 d	12.72 b
Late October-	168-112-112	51.55 f	1.43 bc	114.87 e	10.86 e

A: NITROGEN

Early November	200-112-112	57.22 d	1.35 de	108.23 f	11.48 d
	250-112-112	54.05 e	1.32 de	101.77 g	11.67 d
LSD 5%		1.952	0.195	5.750	0.516

B: PHOSPHOROUS

Time of	N Rates and	Germination	Tillers/Plant	Cane Yield	S. Rec.
Application	PK (kg/ha)	(%)		(t/ha)	(%)
Timely	168-112-112	66.30	2.34	114.06 abc	12.06
Application (Recommended)	168-150-112	61.28	2.23	111.80 a	12.94
	168-200-112	62.47	2.11	101.30 bcd	12.55
Late August-	168-112-112	62.63	2.02	103.77 ab	12.40
Early September	168-150-112	67.74	2.29	93.89 cd	12.14
	168-200-112	63.95	2.82	92.64 d	13.27
Late October-	168-112-112	67.65	2.03	95.74 bcd	13.06
Early November	168-150-112	60.99	2.55	80.92 e	12.78
	168-200-112	63.13	2.67	79.31 e	12.08
LSD 5%		N.S.	N.S.	9.714	N.S.

3. SUGARCANE PATHOLOGY

In sugarcane pathological studies, screening against major diseases was done for selecting disease resistant/tolerant clones/lines. The major diseases are Red Rot (*Colletotrichum falcatum*), Whip smut (*Ustilago scitaminea*), Red stripe (*Xanthomonas rubrilineans*), Pokkah Boeng (*Fusarium moniliformae*) and Sugarcane rust (*Puccinia melanocephala*). The work done during the year is reported as under:

1. <u>SCREENING OF SUGARCANE LINES AGAINST RED ROT (Colletotrichum</u> <u>falcatum) IN FRESH CROP</u>

Fifteen promising sugarcane lines were subjected to artificial inoculations. Sugarcane lines were injected with disease inoculum using plug technique. Varietal reaction was assessed on the basis of Srinivasan and Bhats, rating scale (0-9). Among 15 lines, 06 were found resistant, 06 moderately resistants', and 03 susceptible. (Table 3.1).

2. <u>SCREENING OF SUGARCANE LINES AGAINST WHIP SMUT (Ustilago</u> <u>scitaminea) IN FRESH CROP</u>

Seed setts of 15 lines were dipped for five minutes in spore suspension of *Ustilago scitaminea* before planting. Varietal reaction was recorded on the basis of infected cane percentage. Eight (08) were found resistant, 04 moderately resistants, 01 moderately susceptible and 02 susceptible to whip smut. (Table 3.1).

3. <u>SCREENING OF SUGARCANE LINES AGAINST POKKAH BOENG</u> (*Fusarium moniliformae*).

The growing point of 15 sugarcane lines were injected with spore suspension of causal fungus *"Fusarium moniliformae*" during the month of August. Assessment of the disease was done on the basis of chlorosis of young growing tops and top rot ϵ canes. All the lines/entries were found free from the disease. (Table 3.1).

4. <u>SCREENING OF SUGARCANE LINES AGAINST RED STRIPE</u> (Xanthomonas rubrilineans).

Fifteen sugarcane lines were screen against red stripe disease by injecting causal bacterium near the growing point of standing canes. Assessment of the disease was made on the basis of reddish streaks and top rotting. This year, the check line S2011 BD 1283 showed 75 % infection. But the test lines/ entries remained free from the disease under discussion. (Table 3.1).

5. <u>SCREENING OF SUGARCANE LINES AGAINST RUST</u> (*Puccinia melanocephala*).

Fifteen sugarcane lines were screen against sugarcane rust. A highly susceptible variety BF-162 was planted as spreader and check variety between the test lines. Rust intensity was recorded by counting rust pustules on the you4g leaves. All the lines were found resistant to the disease. (Table 3.1).

7. <u>BEHAVIOUR OF SUGARCANE LINES AGAINST RED ROT IN NURSERY-</u> <u>II & NURSERY-III</u>

NURSERY-II

In Nursery-II fifty-five lines (80) were artificially inoculated with red rot pathogen. Fifty-two (52) were resistant twelve (12) lines were found moderately resistant, six (06) moderately susceptible and ten (10) were susceptible against the disease. (Table 3.2).

NURSERY-III

Out of sixty-three (63) lines inoculated with red rot pathogen. Twenty-three (23) lines were found resistant, eleven (11) moderately resistant, four (4) were mod. susceptible and twenty-five (25) entries were susceptible to the disease. (Table 3.3).

8. <u>BEHAVIOUR OF SUGARCANE LINES AGAINST RED ROT IN VARIETAL</u> <u>TRIALS OF SUGARCANE</u>

a. Semi-final varietal trials

In semi-final, twenty (20) lines were artificially inoculated and evaluated against Red Rot. Ten (10) were found resistant, four (04) were moderately resistant, three (03) mod. Susceptible and two (03) were susceptible to the disease respectively. (Table 3.4).

b. Final varietal trials

(Early and medium late final varietal trials).

Eight (08) advanced lines were evaluated in the final varietals trials against Red Rot. Out of eight (08) lines, two (02) were found resistant, four (04) moderately resistant and two (02) moderately susceptible. (Table 3.5).

c. Coordinated varietal trials (NUVYT):

(i) <u>NUVYT (2019-21) 1^{st} year:</u> In this set of the trial sixteen (16) sugarcane lines were screen against Red Rot pathogen. Out of these, one (01) was found resistant, three (03) moderately resistant, one (01) moderately susceptible and eleven (11) were susceptible to the disease. (Table 3.6).

(ii) <u>NUVYT (2018-20) 2^{nd} year:</u> In 2^{nd} set of the trial, ten (10) sugarcane clones were subjected for screening to red rot disease. Three (03) the lines showed resistant reaction while five (05) and two (02) possessed moderate to susceptible reaction respectively (Table 3.7).

d. Sugarcane Research Station, Khanpur;

In preliminary, semi-final, final varietal trials and NUVYT about fifty-four clones/ promising lines of sugarcane were artificially inoculated with red rot pathogen to find out resistance to the disease under climatic condition of South Punjab. Out of fifty-four (53) advanced lines/entries. Thirty-three (32) were found resistant, nine (09) moderately resistant, five (05) moderately susceptible and seven (07) susceptible to the disease. (Table 3.9).

e. Sugarcane Research Station Sargodha;

Eleven (11) advanced sugarcane lines / clones were tested against red rot disease under artificial inoculation condition only two (02) were found resistant while remaining four (04) and five (05) showed moderately to susceptible reaction to red rot respectively. (Table 4.00)

9. Evaluation of varietal resistant against diseases (Direct introduction from France) at SRI, Faisalabad.

Eleven (11) sugarcane varieties as direct introduction from France were tested against diseases. Four varieties found resistant to red rot one (01) moderate resistant, three (03) each remained moderately susceptible to susceptible against the disease. In case of whip smut disease all the varieties were found resistant expect one. Other diseases did not appear in the field. (Table .4.1).

Criteria for the assessment of varietal reaction against diseases in sugarcane.

a. (Whip Smut, Pokkah Boeng, Red Stripe and Rust)

Reaction to disease		Diseas	e infection
Resistant (R)		=	0-5 %
Moderately resistant (MR)		=	5.1 - 15 %
Moderately susceptible (MS)		=	15.1 - 30 %
Susceptible (S)		=	above 30%
	Reference:	(G.P. 1	Rao <i>et al.</i> , 1996)

b. <u>Red Rot</u>	
-------------------	--

Reaction to disease	Diseas	se score
Resistant (R)	=	0.00 - 2.00
Moderately resistant (MR)	=	2.1 - 4.00
Moderately susceptible (MS) =	4.1 - 6.00
Susceptible (S)	=	6.1 - 8.00
Highly susceptible (HS)	=	Above 8.00
	Reference:	(Srinivasan & Bhati 1961)

Table 3.1 :- SCREENING OF SUGARCANE LINES AGAINST RED ROT (Colletotrichum falcatum) IN FRESH CROP

Sr.#	Name of advanced		Rea	action		
	lines	Red rot	Whip smut	Pokha.	Red	Rust
				Boeng	stripe	
1	S2003-US-778	S	S	R	R	R
2	S2006-US-54	MR	R	R	R	R
3	S2003-US-633	MR	R	R	R	R
4	S2008-AUS-133	R	MR	R	R	R
5	CO-238	R	R			
6	S96-SP-302	R	MR	R	R	R
7	S2006-SP-93	S	MR	R	R	R
8	S2006-US-658	R	R	R	R	R
9	VMC-87/599	MR	R	R	R	R
10	S2009-SA-111	MR	MS	R	R	R
11	S2009-SA-08	MR	R	R	R	R
12	S2012-FD-18	R	S	R	R	R
13	S2008-M-42	R	MR	R	R	R
14	S2002-US-133	R	R	R	R	R
15	S2003-US-127	MR	R	R	R	R

Reaction to diseases	Number of Clone					
	Red	Whip	Pokkah	Red	Rust	Sugarcane
	Rot	Smut	Boeng	Stripe		mosaic
Resistant (R)	6	08	15	15	15	15
Moderately Resistant (MR)	6	04	0	0	0	0
Moderately Susceptible (MS)	0	01	0	0	0	0
Susceptible (S)	3	2	0	0	0	0
Total:	15	15	15	15	15	0

Table 3.2 :- Screening of Sugarcane Clones in Nursery-II during 2018-19

Sr#	Clones	Reaction (Red Rot)	Sr.#.	Clones	Reaction (Red Rot)
1	SLF17-91	R	42	SLF17-158	R
2	SLF17-87	R	43	SLF17-161	R
3	SLF17-80	R	44	SLF17-200	R
4	SLF17-74	MR	45	SLF17-202	R
5	SLF17-71	R	46	SLF17-209	R
6	SLF17-70	R	47	SLF17-268	R
7	SLF17-68	R	48	SLF17-267	R
8	SLF17-64	R	49	SLF17-259	R
9	SLF17-63	MR	50	SLF17-254	R
10	SLF17-61	R	51	SLF17-249	R
11	SLF17-11	R	52	SLF17-248	R
12	SLF17-34	R	53	SLF17-244	R
13	SLF17-38	R	54	SLF17-232	R
14	SLF17-39	R	55	SLF17-226	S
15	SLF17-40	R	56	SLF17-221	MS
16	SLF17-42	R	57	SLF17-311	S
17	SLF17-46	S	58	SLF17-310	MR
18	SLF17-50	MR	59	SLF17-309	S
19	SLF17-58	R	60	SLF17-299	MS
20	SLF17-59	MR	61	SLF17-289	S
21	SLF17-146	R	62	SLF17-296	MR
22	SLF17-144	R	63	SLF17-295	MS
23	SLF17-141	MS	64	SLF17-294	MR
24	SLF17-139	R	55	SLF17-293	R
25	SLF17-138	R	66	SLF17-292	R
26	SLF17-137	R	67	SLF17-275	MR
27	SLF17-133	S	68	SLF17-280	R
28	SLF17-132	R	69	SLF17-281	MR
29	SLF17-95	S	70	SLF17-283	R

-					
30	SLF17-97	R	71	SLF17-284	R
31	SLF17-113	R	72	SLF17-286	R
32	SLF17-121	S	73	SLF17-287	S
33	SLF17-123	R	74	SLF17-289	MR
34	SLF17-126	R	77	SLF17-290	MR
35	SLF17-127	R	78	SLF17-291	S
36	SLF17-128	R	79	SLF17-293	R
37	SLF17-129	R	80	SLF17-131	S
38	SLF17-130	R			
39	SLF17-152	R			
40	SLF17-157	R			

Summary OF N-II:

Red Rot diseases	No. of clones
Resistant (R)	54
Moderately resistant (MR)	11
Moderately susceptible (MS)	04
Susceptible (S)	11
Total	80

Table 3.3: Screening of Sugarcane Clones in Nursery-III during 2018-19

Sr.#	NAME OF LINE/ ENTRY	REACTION TO RED ROT DISEASE	Sr.#	NAME OF LINE/ ENTRY	REACTION TO RED ROT DISEASE
1	PSR00-23	MS	32	S-2016SL-109	MR
2	PSR-98-140	R	33	S-2016SL-104	MR
3	HSF-240	R	34	S-2016SL-131	S
4	PSR-01-232	MS	35	S-2016SL-143	R
5	PSR-99-85	S	36	S-2016SL-171	S
6	PSR-98-27	MR	37	S-2016SL-182	S
7	PSR-01-28	R	38	S-2016SL-218	S
8	PSR-99-89	S	39	S-2016SL-233	S
9	CP00-1101	R	40	S-2016SL-296	R
10	CP-09-1952	S	41	S-2016SL-290	S
11	PLL02-6448	MR	42	S-2016SL-284	R
12	HSF-240	MR	43	S-2016SL-276	S
13	CP01-1372	MR	44	S-2016SL-240	S
14	CP-03-1912	S	45	S-2016SL-234	S
15	CPLL-05-1102	R	46	CPF-249	S
16	CPLL-02-0926	R	47	S-2016SL-300	R
17	CPF-249	S	48	CP06-2400	R
18	CP-04-1385	S	49	CPF-249	S
19	CP-09-1822	R	50	CO-0238	R
20	CPLL-05-1201	MS	51	CP-7-2137	S
21	CO-05-1526	R	52	HSF-240	MR

22	S-2016SL-02	R	53	S-2016-SL-306S	MR
23	S-2016SL-41	R	54	PSR-98-11	S
24	S-2016SL-80	S	55	PSR-98-38	MR
25	S-2016SL-81	S	56	PSR-01-46	MS
26	S-2016SL-83	MR	57	PSR-98-38	R
27	S-2016SL-91	R	58	PSR-01-46	R
28	S-2016SL-128	S	59	PSR-00-11	S
29	S-2016SL-127	MR	60	PSR-99-182	R
30	S-2016SL-124	S	61	CPF-249	S
31	S-2016SL-114	R	62	CP-04-1385	R
			63	CP-04-1935	R

Summary OF N-III:

Red Rot diseases	No. of clones
Resistant (R)	23
Moderately resistant (MR)	11
Moderately susceptible (MS)	04
Susceptible (S)	25
Total	63

Table.3.4: Screening of sugarcane clones in semi-final varietal Trials.

Sr.#	Clones	Reaction(Red rot)
1	S2015-SL-636	S
2	S2015-SL-574	MS
3	S2015-547	MS
4	S2015-SL-540	R
5	S2015-SL-444	MR
6	S2015-SL-416	R
7	S2015-SL-404	MR
8	S2015-SL-302	R
9	S2015-SL-290	MR
10	S2015-SL-289	R
11	S2015-SL-244	R
12	S2015-SL-158	MS
13	S2015-SL-108	R
14	S2015-SL-101	R
15	S2015-SL-89	R
16	S2015-SL-10	R
17	S2014-SL-2006	S
18	S2014-SL-1700	MR
19	S2015-SL-1322	R
20	PSR07-145	R

SUMMARY OF SEMI-FINAL

Reaction to Red rot	No of clones
Resistant	10
Moderately resistant	04
Moderately susceptible	03
Susceptible	03
Total	20

Tab.3.5:- Screening of sugarcane clones of Final Varietal Trials.

Sr.#	Clones	Reaction(Red rot)
1	S2014-SL-247	MS
2	S2014-SL-2350	MR
3	S2014-SL-2290	MS
4	S2014-SL-2200	MR
5	S2014-SL-1359	R
6	S2013-US-917	MR
7	S2013-M-45	MR
8	S2012-M1379	R

SUMMARY OF FINAL VARIATAL TRIAL

Reaction to Red rot	No of clones
Resistant	2
Moderately resistant	4
Moderately susceptible	2
Susceptible	0
Total	8

Table 3.6: Screening of Sugarcane Clones in NUVYT 2019-20 (1st year)

S. #.	Clone	Reaction to red rot disease
1	VMC-87/599	S
2	S2009 SA-111	MR
3	S96 SP-302	S
4	CPSG-2415	MS
5	CPSG-2718	S
6	SLSG-1283	MR
7	CPFG-14	S
8	CPFG-15	MR
9	CPSG-16	R
10	MH-91	S
11	LampTJ-76/803	S
12	CPTJ-349	S
13	CPTJ-1549	S
14	SLTh-1510	S
15	CPF 246	S
16	CPF 249	S

Red Rot diseases	No. of clones
Resistant (R)	01
Moderately resistant (MR)	03
Moderately susceptible (MS)	01
Susceptible (S)	11
Total	16

Summary OF NUSYT-2019-20 (1st year)

Table :- 3.7. Reaction of Sugarcane Clones to Red Rot in NUYT 2019-20 (2ndyear) Planted at SRI, Faisalabad

S. #	Clone	Reaction to red rot disease
1	S2002 US-133	R
2	S2003 US-127	MR
3	S2003 US-633	MR
4	S2005 US-54	MR
5	S2008 M-42	MR
6	S2008 Aus-133	R
7	Th-1312	MR
8	Th-1412	S
9	CPF 249	S
10	HSF 240	R

Summary OF NUSYT-2019-20 (2nd year)

Red Rot diseases	No. of clones
Resistant (R)	03
Moderately resistant (MR)	05
Moderately susceptible (MS)	0
Susceptible (S)	02
Total	10

Table :-3.8 DIRECTION INTRODUCTION FROM FRANCE (SEED INCREASE)

Sr.#	Name of advanced	Reaction							
	lines	Red rot	Whip smut	Pokha. boeng	Red stripe	Rust			
1	B-111	S	R	R	R	R			
2	FR-89-746	MS	R	R	R	R			
3	FR-90-88	S	R	R	R	R			
4	FR-92-394	S	R	R	R	R			
5	FR-94-129	R	R						

6	FR-95-579	R	R	R	R	R
7	FR-96-01	R	R	R	R	R
8	FR-09-382	MS	MR	R	R	R
9	FR-09-190	MS	R	R	R	R
10	CRS-76	MR	MS	R	R	R
11	Karan	R	R	R	R	R

SUMMARY O	F CANES	(Direct introdu	uction from	FRANCE)
------------------	----------------	-----------------	-------------	---------

Reaction to Red rot	No of clones
Resistant	04
Moderately resistant	01
Moderately susceptible	03
Susceptible	03
Total	11

Table:- 3.9 Screening of sugarcane clones at SRS, Khanpur

Sr.#	Clones	Reaction	Sr.#.	Clones	Reaction (Red
		(Red rot)			rot)
1	S2008-FD-19	R	27	S2011-SL-62	MS
2	S2008-M-42	R	28	S2011-SL-392	R
3	S2006-US-658	R	29	S2011-SL-809	MR
4	S2008-AUS-133	R	30	PSR-97-41	R
5	S2008-AUS-134	S	31	SL-97-45	R
6	S2008-AUS-138	MR	32	SL-96-175	R
7	S2009-SA-54	R	33	<mark>M-2238/89</mark>	R
8	SPF-234	S	34	MS-03-CP-368	R
9	S2009-SA-08	MR	35	MS-03-CP-389	R
10	S2009-SA-79	R	36	CP-TJ-27	MR
11	S2009-SA-111	R	37	LAM-TJ-76/803	S
12	VMC-87/599	MS	38	CP-TJ-349	S
13	SL-96/128	R	39	CP-TJ-70/1549	MS
14	SL-96/175	R	40	S2007-SP-576	R
15	CPF-249	S	41	S-96-US-302	MR
16	SPF-234	S	42	S2005-US-54	R
17	S2012-FD-25	R	43	S2002-US-133	R
18	VMC88/354	R	44	HSF-240	R
19	S2011-SL-62	MS	45	S2008-M-42	R
20	S2011-SL-392	R	46	S2003-US-633	MR
21	PSR97/45	R	47	S2003-US-127	MR
22	M-2238-89	R	48	S2008-AUS-133	R
23	S2008-FD-22	R	49	TH-1312	MR
24	S2008-FD-25	R	50	TH-1412	S
25	VMC-88/354	R	51	SPF-213	R
26	VMC-87/599	MS	52	CPF-77400	MR
			53	S2009-SA-57	R

Reaction to Red rot	No of clones
Resistant	32
Moderately resistant	09
Moderately susceptible	05
Susceptible	07
Total	53

SUMMARY SUGARCANE CLONES AT SRS, KHANPUR

Table:- 3.10 Screening of sugarcane clones at SRS, Sargodha

Sr.#	Name of advanced lines	Red rot
1	S2003-US-778	S
2	S2003-US-127	MS
3	S2002-US-133	R
4	S2003-US-633	S
5	S2005-US-54	MS
6	CPF-249	S
7	HSF-240	R
8	CPF-248	MS
9	VMC-97/599	MS
10	S2009-SA-111	S
11	S96-SP-302	S

SUMMARY SUGARCANE CLONES AT SRS, SARGODHA

Reaction to Red rot	No of clones
Resistant	02
Moderately resistant	0
Moderately susceptible	04
Susceptible	05
Total	11

During the year 2019-20, new varieties / advanced lines planted at Sugarcane Research Institute, Faisalabad in different varietal trials were screened for resistance against sugarcane borers viz., top borer, stem borer, root borer, and Gurdaspur borer. The tiller infestation was recorded at tillering stage of the crop by counting the total healthy and infested tillers from central two rows of each plot. "Dead hearts" % age was calculated by using the following formula.

Dead heart % = <u>Number of dead hearts</u> x 100 Total No. of tillers

At harvest time samples of 10 canes of each variety / clone were randomly collected from 3 replications. The canes were splitted/ dissected longitudinally and closely observed for each borer damage. The internode damage was recorded by counting the total number of internodes along with attacked internodes by each borer separately. The internode damage was calculated by using the following formula.

Internode Damage % =<u>Number of attacked internodes x 100</u>

Total No. of internodes

1. SCREENING OF ADVANCED LINES OF SEMI FINAL VARIETAL TRIAL AGAINST SUGARCANE BORERS (SET-1).

Twelve (12) clones/varieties included in Semi Final varietal trials (Set-I) were planted at Research Area of Sugarcane Research Institute, Faisalabad under normal input requirements following Randomized Complete Block Design (RCBD) having a plot size of 4mx4.80m with three replications during the month of March 2019. Dead heart % age was recorded from two central rows of each plot twice during May and June with one month interval. At harvest time, internode damage % age was recorded and data recorded in Table-4.1.

Sr.	Clone	Tiller	<u>Semi r</u>					
	CIOILE			111	ter noue	Damage %		D
No		Infestation	Тор	Stem	Root	Gurdaspur	Cumulative	Resistance
		%	Borer	Borer	Borer	Borer	Internode	Status
							Damage	
1	PSR-07-145	0.365	0.00	8.229	0.330	0.00	8.559	T*
2	S-2014-Sl-1322	1.903	0.00	6.348	0.000	0.00	6.348	Т
3	S-2014-SL-1700	2.815	0.00	12.438	0.463	0.00	12.901	MT**
4	S-2014-SL-2006	1.048	0.00	12.293	1.235	0.00	13.528	MT**
5	S-2015-SL-10	1.012	0.00	5.006	0.182	0.00	5.188	Т
6	S-2015-SL-89	0.963	0.00	10.521	1.858	0.00	12.379	MT**

 Table-4.1:
 Semi Final Varietal Trial (Set-I)

7	S-2015-SL-101	0.528	0.00	2.468	0.000	0.00	2.468	Т	
8	S-2015-SL-108	0.575	0.00	12.316	0.487	0.00	12.803	MT**	
9	S-2015-SL-158	1.240	0.00	15.422	0.816	0.00	16.238	MT**	
10	S-2015-SL-244	1.091	0.00	6.547	0.360	0.00	6.907	Т	
11	HSF-240(Check)	1.040	0.00	3.856	0.352	0.00	4.208	Т	
12	CPF-249(Check)	0.963	0.00	6.226	0.000	0.00	6.226	Т	
	T*-Tolerant MT**- Moderately Tolerant								

The results (Table-4.1) revealed that out of twelve (12) clones / varieties, minimum tiller infestation was recorded on PSR-07-145(0.365%) followed by S-2015-SL-101 (0.528%), S-2015-SL-108 (0.575%), S-2015-SL-89 (0.963%) and CPF-249 (Check) (0.963%), while it was maximum on S-2014-SL-1700 (2.815%) followed by S-2014-Sl-1322 (1.903%) and S-2015-SL-158 (1.240%).

With respect to internode damage, no internode damage by top borer was recorded on any advanced line. Minimum damage by stem borer was recorded on S-2014-SL-1359 (2.468%) followed by S-2014-SL-1322 (3.856%) and CPF-249 (Check) (5.006%) whereas, it was maximum on S-2014-SL-1700 (15.422%) followed by S-2014-SL-2006 (12.438%), HSF-240 (Check) (12.316%), S-2013-M-46 (12.293%) and S-2015-SL-89 (10.521%). No internode damage by root borer was observed on S-2014-SI-1322, S-2015-SL-101 and CPF-249 (Check), minimum on S-2015-SL-10 (0.182), PSR-07-145 (0.33%) HSF-240 (Check) (0.352%) and S-2015-SL-244 (0.360%) while it was maximum on S-2015-SL-89 (1.858%) and S-2014-SL-2006 (1.235%). The attack of Gurdaspur Borer was found nil during the crop season.

Minimum cumulative internode damage was recorded on S-2015-SL-101 (2.468%) followed by HSF-240 (Check) (4.208%) and S-2015-SL-10 (5.188%) while it was maximum on S-2015-SL-158 (16.238%) followed by S-2014-SL-2006 (13.528%), S-2014-SL-1700 (12.901 %), S-2015-SL-108 (12.803%) and S-2015-SL-89 (12.379%).

Out of twelve (12) clones/ varieties seven (07) were found tolerant and five (05) moderately tolerant with respect to cumulative internode damage.

2. SCREENING OF ADVANCED LINES OF SEMI FINAL VARIETAL TRIAL AGAINST SUGARCANE BORERS (SET-II)

Twelve (12) clones / varieties included in Semi Final varietals trials (Set-II) were planted at Research Area of Sugarcane Research Institute, Faisalabad under normal input requirements, following Randomized Complete Block Design having a plot size of 4mx4.80m with three replications during the month of March 2019. Dead heart % age was recorded from two central rows of each plot twice during May and June with one-month Page 63 of 82 interval. At harvest time, internode damage % age was recorded and data recorded in Table-4.2.

Sr.	Clone	Tiller		Internode Damage %						
No		Infestation %	Top Borer	Stem Borer	Root Borer	Gurdaspur Borer	Cumulative Internode Damage	Resistance Status		
1	S-2015-SL-289	0.000	0.00	5.060	0.000	0.00	5.060	T^{*}		
2	S2015-SL-290	1.637	0.00	1.598	0.292	0.00	1.890	Т		
3	S-2015-SL-302	4.497	0.00	7.647	0.000	0.00	7.647	Т		
4	S-2015-SL-404	0.178	0.00	8.016	0.532	0.00	8.548	Т		
5	S-2015-SL-416	2.094	0.00	4.381	0.000	0.00	4.381	Т		
6	S-2015-SL-444	0.642	0.00	8.995	0.353	0.00	9.348	Т		
7	S-2015-SL-540	3.597	0.00	2.571	0.340	0.00	2.911	Т		
8	S-2015-SL-547	1.608	0.00	6.285	0.824	0.00	7.109	Т		
9	S-2015-SL-574	0.823	0.00	9.635	0.728	0.00	10.363	MT**		
10	S-2015-SL-636	0.492	0.00	15.316	0.706	0.00	16.022	MT**		
11	HSF-240 Check)	1.718	0.00	2.807	0.150	0.00	2.957	Т		
12	CPF-249 Check)	1.494	0.00	8.617	0.626	0.00	9.243	Т		
	T*-Tolerant MT**- Moderately Tolerant									

Table-4.2 Semi Final Varietal Trial (Set II)

The results (Table-4.2) revealed that out of twelve (12) clones / varieties, no tiller infestation was recorded on S-2015-SL-289. Minimum tiller infestation was recorded on S-2015-SL-404 (0.178%) followed by S-2015-SL-636 (0.492%), S-2015-SL-444 (0.642%) and S-2015-SL-574 (0.823%), while it was maximum on S-2015-SL-302 (4.497%) followed by S-2015-SL-540 (3.597%) and S-2015-SL-416 (2.094%).

With respect to internode damage, no internode damage by top borer was recorded on any advanced line. Minimum damage by stem borer was recorded on S2015-SL-290 (1.598%) followed by S-2015-SL-540 (2.571%) and HSF-240 Check) (2.807%) whereas, it was maximum on S-2015-SL-636 (15.316%) followed by S-2015-SL-574 (9.635%), S-2015-SL-444 (8.995%), CPF-249 Check) (8.617%) and S-2015-SL-404 (8.016%). No internode damage by root borer was observed on S-2015-SL-289, S-2015-SL-302 and S-2015-SL-416. Minimum internode damage by root borer was observed on HSF-240 Check) (0.150), S2015-SL-290 (0.292%), S-2015-SL-540 (0.340%) and S-2015-SL-444 (0.353%) while it was maximum on S-2015-SL-547 (0.824%), S-2015-SL-574 (0.728%) and S-2015-SL-636 (0.706). The attack of Gurdaspur Borer was found nil during the crop season.

Minimum cumulative internode damage was recorded on S2015-SL-290 (1.890%) followed by S-2015-SL-540 (2.911%) and HSF-240 Check) (2.957%) while it was maximum on S-2015-SL-636 (16.022%) followed by S-2015-SL-574 (10.363%), S-2015-

Out of twelve (12) clones/ varieties ten (10) were found tolerant and two (02) moderately tolerant with respect to cumulative internode damage.

3. SCREENING OF DIFFERENT ADVANCED LINES / VARIETIES OF FINAL VARIETAL TRIAL FOR RESISTANCE AGAINST SUGARCANE BORERS

Ten (10) clones/varieties included in Final Varietal Trial were planted at research area of Sugarcane Research Institute, Faisalabad under normal input requirements following Randomized Complete Block Design having a plot size of 3mx3.60m with three replications during the month of March 2019. Dead heart % age was recorded from central two rows of each plot by counting the total number of tillers along with infested tillers twice during May and June with one-month interval. At harvest time a sample of 10 canes randomly selected was collected from each plot. The canes were splitted/ dissected longitudinally and closely observed for recording internode damage by each borer separately. Results of cumulative internode damage was calculated and presented in Table-4.3.

Sr.	Clone	Tiller								
No		Infestation %	Top Borer	Stem Borer	Root Borer	Gurdaspur Borer	Cumulative Internode Damage	Resistance Status		
1	S2012-M-1379	2.880	0.000	8.197	0.153	0.000	8.350	T*		
2	S-2013-M-45	4.661	0.000	9.767	0.583	0.000	10.350	MT**		
3	S-2013-US-917	3.936	0.000	4.250	0.167	0.000	4.417	Т		
4	S-2014-SL-1359	2.526	0.000	6.407	0.150	0.000	6.557	Т		
5	S-2014-SL-2200	4.543	0.000	6.470	0.343	0.000	6.813	Т		
6	S-2014-SL-2290	4.285	0.000	3.447	0.150	0.000	3.597	Т		
7	S-2014-SL-2350	0.383	0.000	2.543	0.000	0.000	2.543	Т		
8	S2014-SL-2477	2.644	0.000	2.137	0.000	0.000	2.137	Т		
9	CPF-249(Check)	1.393	0.000	5.573	0.157	0.000	5.730	Т		
10	HSF-240(Check)	4.079	0.000	3.443	0.313	0.000	3.756	Т		
	T*-Tolerant MT**- Moderately Tolerant									

Table-4.3:Final Varietal Trial

The results (Table-4.3) revealed that out of ten (10) clones / varieties minimum tiller infestation was recorded on S-2014-SL-2350 (0.383%) followed by CPF-249(Check) (1.393%), S-2014-SL-1359 (2.526%), S2014-SL-2477 (2.644%) and S2012-M-1379 (2.880%) while it was maximum on S-2013-M-45 (4.661%) followed by S-2014-SL-2200 (4.543%), S-2014-SL-2290 (4.285%) and HSF-240 (Check) (4.079%).

With respect to internode damage, no internode damage by top borer was recorded on any advanced line. Minimum damage by stem borer was recorded on S2014-SL-2477 (2.137%), S-2014-SL-2350 (2.543%), HSF-240(Check) (3.443%), S-2014-SL-2290 (3.447%) and S-2013-US-917 (4.250%) whereas, it was the maximum on S-2013-M-45 (9.767%) followed by S2012-M-1379 (8.197%), S-2014-SL-2200 (6.470%), S-2014-SL-1359 (6.407%) and CPF-249(Check) (5.573%). No internode damage by root borer was observed on S-2014-SL-2350 and S2014-SL-2477. The minimum internode damage by root borer was observed on S-2014-SL-1359 (0.150%), S-2014-SL-2290 (0.150%), S2012-M-1379 (0.153%) and CPF-249(Check) (0.157%) while it was the maximum on S-2013-M-45 (0.583%), S-2014-SL-2200 (0.343%) and HSF-240(Check) (0.313). The attack of Gurdaspur Borer was found nil during the crop season.

The minimum cumulative internode damage was recorded on S2014-SL-2477 (2.137 %) followed by S-2014-SL-2350 (2.543 %), S-2014-SL-2290 (3.597%), HSF-240(Check) (3.756) and S-2013-US-917 (4.417%) while it was the maximum on S-2013-M-45 (10.350%) followed by S2012-M-1379 (8.350%), S-2014-SL-2200 (6.813 %), S-2014-SL-2200 (6.813 %).

Out of ten (10) clones/ varieties nine (09) were found tolerant and one (01) moderately tolerant with respect to cumulative internode damage.

4. SCREENING OF ADVANCED LINES OF NATIONAL UNIFORM VARIETAL YIELD TRIAL (NUVYT) FOR RESISTANCE AGAINST SUGARCANE BORERS (1st Year).

The results of National Uniform Varietal Yield Trials (Table-4.4) revealed that out of sixteen (16) clones varieties minimum tiller infestation was recorded on S2009 SA-111 (0.856%) followed by CPTJ-1549 (1.189%), CPFG-14 (1.253%) and CPSG-2718 (1.738%) while it was maximum on Lam PTJ-76/803 (5.139%) followed by CPF249 (Check) (4.939%) and CPF-246 (3.546%). No internode damage by top borer was observed on any of the clones screened except S2009 SA-111 (0.877%).

Minimum internode damage by stem borer was recorded on SLSG-1283 (1.996%) followed by CPFG-14 (2.534%) while it was maximum on S96 SP-302 (13.693%) followed by CPTJ-349 (12.074%), CPSG-2718 (11.535%), SL-Th-1510 (10.235%) and CPSG-2415 (10.089).

No internode damage by root borer was observed on SLSG-1283, CPFG-14, and CPFG-16. Minimum internode damage by root borer was recorded on CPF249(Check)

(0.159%), S96 SP-302 (0.399%), followed by CPTJ-349 (0.469%), Lam PTJ-76/803 (0.529%), SL-Th-1510 (0.570%) and CPTJ-1549 (0.581%) while it was maximum on VMC 87/599 (1.550%) and CPSG-2718 (1.426%). The attack of Gurdaspur Borer was found nil during the crop season.

With respect to cumulative internode damage minimum damage was recorded on SLSG-1283 (1.996%) followed by CPFG-14 (2.534%) and maximum on S96 SP-302 (14.092%) followed by CPSG-2718 (12.961%), CPTJ-349 (12.543%), CPSG-2415 (11.181%) and SL-Th-1510 (10.805%).

Out of sixteen (16) clones screened against borers eleven (11) were found tolerant and (05) moderately tolerant with respect to internode damage.

Sr.	Clone	Tiller		Int	ernode	Damage %		
No		Infestation %	Top Borer	Stem Borer	Root Borer	Gurdaspur Borer	Cumulative Internode Damage	Resistance Status
1	VMC 87/599	2.194	0.000	6.302	1.550	0.000	7.852	T*
2	S2009 SA-111	0.856	0.877	7.240	0.452	0.000	8.569	T
3	S96 SP-302	2.573	0.000	13.693	0.399	0.000	14.092	MT**
4	CPSG-2415	2.110	0.000	10.089	1.092	0.000	11.181	MT**
5	CPSG-2718	1.738	0.000	11.535	1.426	0.000	12.961	MT**
6	SLSG-1283	2.410	0.000	1.996	0.000	0.000	1.996	Т
7	CPFG-14	1.253	0.000	2.534	0.000	0.000	2.534	Т
8	CPFG-15	1.848	0.000	6.181	0.986	0.000	7.167	Т
9	CPFG-16	2.245	0.000	5.238	0.000	0.000	5.238	Т
10	MH 91-CP-582	2.077	0.000	6.145	0.647	0.000	6.792	Т
11	Lam PTJ-76/803	5.139	0.000	8.207	0.529	0.000	8.736	Т
12	CPTJ-349	2.545	0.000	12.074	0.469	0.000	12.543	MT**
13	CPTJ-1549	1.189	0.000	6.081	0.581	0.000	6.662	Т
14	SL-Th-1510	2.359	0.000	10.235	0.570	0.000	10.805	MT**
15	CPF-246	3.546	0.000	5.771	0.000	0.000	5.771	Т
16	CPF249(Check)	4.939	0.000	8.312	0.159	0.000	8.471	Т
		T*-Tole	erant M	T**- Moc	lerately]	Folerant		

 Table-4.4: National Uniform Varietal Yield Trial (NUVYT)

 (1st Year)

5. SCREENING OF ADVANCED LINES OF NATIONAL UNIFORM VARIETAL YIELD TRIAL (NUVYT) FOR RESISTANCE AGAINST SUGARCANE BORERS (2nd Year).

The results of National Uniform Varietal Yield Trials (Table-4.5) revealed that minimum tiller infestation was recorded on S2002-US133 (0.754%) followed by S2005-US-54 (0.871%), Th-1412 (0.925%), CPF-249 (0.936%) and HSF-240 (0.969%) while it was

maximum on S2003-US-127 (2.067%) followed by S2003-US-633 (1.901%), S2008-M-42 (1.816%) and Th-1312 (1.702%).

With respect to internode damage, no internode damage by top borer was recorded on any advanced line. Minimum internode damage by stem borer was recorded on S2008-M-42 (3.590%) followed by S2005-US-54 (4.837%) while it was maximum on Th-1412 (10.962%) followed by S2002-US133 (9.151%), S2003-US-127 (8.858%) and CPF-249 (7.501%).

No internode damage by root borer was observed on HSF-240 and Th-1312. Minimum internode damage by root borer was recorded on CPF-249 (0.330%) followed by Th-1412 (0.345%), S2005-US-54 (0.758%), S2008-AUS-133 (0.825%) and S2008-M-42 (0.914%) while it was maximum on S2002-US133 (1.661%) followed by S2003-US-633 (1.365%) and S2003-US-127 (1.299%). The attack of Gurdaspur Borer was found nil during the crop season.

With respect to cumulative internode damage, minimum internode damage was recorded on S2008-M-42 (4.504%) whereas it was maximum on Th-1412 (11.307%) followed by S2002-US133 (10.812%), S2002-US133 (10.157%) and CPF-249 (7.831%). Out of ten (10) clones seven (07) were found tolerant and three (03) moderately tolerant against sugarcane borers.

Sr.	Clone	Tiller		Inte	ernode l	Damage %		_
No		Infestation %	Top Borer	Stem Borer	Root Borer	Gurdaspur Borer	Cumulative Internode Damage	Resistance Status
1	HSF-240	0.969	0.000	6.109	0.000	0.000	6.109	T*
2	CPF-249	0.936	0.000	7.501	0.330	0.000	7.831	Т
3	Th-1412	0.925	0.000	10.962	0.345	0.000	11.307	MT**
4	Th-1312	1.702	0.000	6.466	0.000	0.000	6.466	Т
5	S2008-AUS-133	1.291	0.000	6.458	0.825	0.000	7.283	Т
6	S2008-M-42	1.816	0.000	3.590	0.914	0.000	4.504	Т
7	S2005-US-54	0.871	0.000	4.837	0.758	0.000	5.595	Т
8	S2003-US-633	1.901	0.000	6.167	1.365	0.000	7.532	Т
9	S2003-US-127	2.067	0.000	8.858	1.299	0.000	10.157	MT**
10	S2002-US133	0.754	0.000	9.151	1.661	0.000	10.812	MT**
		T*-To	lerant M	T**- Moo	lerately '	Tolerant		

Table-4.5:National Uniform Varietal Yield Trial (NUVYT)
(2nd Year)

6. MICROBIAL BIOCONTROL OF SUGARCANE INSECT PEST COMPLEX.

The experiment was conducted on the spring sown sugarcane crop (CPF-247) during

2019 to evaluate the efficacy of five (05) different microbial bio-control agents and a synthetic insecticide alongside a control treatment where nothing was applied. All the treatments, viz.,

Bacteria (*Bacillus thuringiensis*) based (G) formulation @ 8 kg / acre; Bacteria (*Bacillus thuringiensis*) based (WP) formulation @ 1 kg / acre ; Fungus (*Metarhizium anisoplai*) based (WP) formulation @ 1 kg / acre ; Baculovirus based (WP) formulation @ 1 kg / acre ;

Mixture (Bacteria G+Bacteria WP+Fungal WP+Baculovirus WP) @ 3 kg / acre and Chlorantraniliprol+Thiamethoxam @4Kg/acre were applied on setts at the time of sowing, completion of germination, earthing up stage and 130 to 140 days after planting (DAP).

Control plots were maintained under natural conditions. Experiment was laid out following Randomized Complete Block Design having a plot size of 4m x3.60m with three replications. Dead heart % age was recorded from central two rows of each plot by counting the total number of tillers along with infested tillers twice during May and June with one-month interval. At harvest time a sample of 10 canes randomly selected was collected from each plot. The canes were splitted/ dissected longitudinally and closely observed for recording internode damage by each borer separately and cumulative internode damage was calculated. The Pyrilla and Black bug population was recorded on per leaf and per leaf sheath basis respectively and presented in Table-4.6.

					SUCKING INSECTS				
Sr.	Treatments	Tiller	8					v	Black bug
No		Infestation %	Top Borer	Stem Borer	Root Borer	-	Cumulative Internode	(Per leaf)	(Per leaf sheath)
1	T1: Bacteria (<i>Bacillus</i> <i>thuringiensis</i>) based (G) formulation	7.715	0.775	0.945	1.825	0.000	Damage 3.545	17.583	1.834
2	T2 :Bacteria (<i>Bacillus</i> <i>thuringiensis</i>) based (WP) formulation	9.373	0.721	1.964	0.887	0.000	3.572	16.223	1.778
3	T3 :Fungus (Metarhizium anisoplai)	8.686	0.789	5.073	1.836	0.000	7.698	16.278	2.167

 Table-4.6:
 MICROBIAL BIOCONTROL OF INSECT PEST COMPLEX IN SUGARCANE

	based (WP) formulation								
4	T4:	11.104	0.000	3.398	0.588	0.000	3.986	12.223	1.75
	Baculovirus								
	based (WP)								
	formulation								
5	T5 :2+3+4	8.708	0.000	3.646	0.574	0.000	4.220	13.639	1.972
	(Mixture)								
6	T6:	6.944	0.896	0.896	0.000	0.000	1.792	6.917	1.458
	Chlorantranilip								
	rol+Thiametho								
	xam								
7	T7 :Control	12.816	0.000	1.919	1.880	0.000	3.799	15.167	1.833
	(under natural								
	condition)								

Based on the results (Table-4.6) it is concluded that at tillering stage among the microbial formulations, T1 gave best control with respect to tiller infestation i.e., 39.802% above control treatment (T7) as compared with T6 where it was 45.818% above control. Regarding internode damage, the tested microbial formulations did not show any efficacy. For sucking insects T4 gave control efficacy of 19.411% for Pyrilla as compared to 54.394% by T6 above control treatment (T7) and for Black bug it was 4.528% and 20.458% respectively.

5. SUGARCANE TECHNOLOGY

1. QUALITY EVALUATION OF SUGARCANE CLONES

Two different sets of sugarcane clones i.e. ten clones as final varietal trial, twelve as semifinal varietal trial Set-I and Set-II were studied for evaluation of best juice quality in order to assess CCS (%) and the stage of maturity. Qualitative analysis of different cane varieties for their juice is an important mandate of varietal development program. The parameters of juice quality analysis are Brix (%), Pol (%), Purity (%) and CCS (%) of juice. Three sets of different cane clones / varieties were studied in this experiment, i.e., Final varietal trial, Semi-Final Varietal Trial Set-I and Semi-Final Varietal Trial Set-II. The analysis of various clones was conducted for juice quality parameters starting from October-2019 on bi-monthly basis.

Semi-Final Varietal Trial:

In Semi-final varietal trial Set- I, mean the maximum CCS% was observed in SL-158 (12.18) followed by SL-89 (12.1) and PSR-07-45 (12.06) as compared to HSF-240 (12.37) & CPF-249 (12.85) as standard [Table 1(i)].

Sr. No.	Variety/Clone Name	October	November	December	January	February	Avg. (Nov. to Jan.) CCS%
1	PSR-07-45	9.00	9.77	13.0	13.4	13.51	12.06
2	S2014SL-1322	6.78	8.67	11.76	13.07	13.12	11.17
3	SL-1700	8.99	9.66	10.99	12.75	12.85	11.13
4	SL-2006	9.10	10.84	11.33	12.73	12.92	11.63
5	SL-10	7.96	10.88	11.54	13.1	13.15	11.84
6	SL-89	8.18	11.16	12.16	12.98	13.11	12.1
7	SL-101	6.17	7.91	11.92	13.44	13.48	11.09
8	S2015SL-108	6.92	9.02	12.92	13.44	13.52	11.79
9	SL-158	6.47	10.62	12.43	13.49	13.53	12.18
10	SL-244	7.53	9.81	11.56	12.97	13.18	11.45
11	CPF-249	10.49	11.88	13.23	13.43	13.48	12.85
12	HSF-240	9.44	11.45	12.65	13.02	13.12	12.37

[Table-5.1(i)]. Qualitative Analysis (CCS %) of Semi Final Varietal Trial Set -I

In set-II, maximum CCS% was noted in S2015-SL-289 (12.78) followed by SL-547 (12.20) as compared to HSF-240 (12.21) & CPF-249 (12.54) as standard [Table-5.1(ii)]. In this Semi-final varietal trial, twenty-four (24) different sugarcane clones/varieties, including CPF-249 and HSF-240 as standard, were studied. The quality parameters data [Table-5.1(I&ii)]. showed that CCS% gradually improved with the maturity of crop. It was lower during the month of October and slightly improved up to the month of February.

Sr. No.	Variety/Clone Name	October	November	December	January	February	Avg. (Nov. to Jan.) CCS%
1	S2015-SL-289	11.14	12.45	12.81	13.07	13.12	12.78
2	SL-290	6.07	9.05	12.47	12.94	13.05	11.49
3	SL-302	8.32	9.92	10.52	13.10	13.15	11.18
4	SL-404	9.02	10.74	12.38	13.32	13.40	12.15
5	SL-416	8.07	10.69	12.34	12.97	13.10	12.0
6	SL-444	10.01	11.6	11.8	12.11	12.80	11.84
7	SL-540	7.25	9.73	12.31	12.50	12.85	11.51
8	SL-547	7.62	10.89	12.59	13.12	13.25	12.20
9	SL-574	9.06	9.39	11.9	13.82	13.80	11.70
10	SL-636	8.40	9.65	12.15	12.25	12.40	11.35
11	HSF-240	9.60	11.31	12.37	12.94	13.10	12.21
12	CPF-249	10.36	11.72	12.65	13.24	13.35	12.54

[Table-5.1(ii)]. Qualitative Analysis (CCS %) of Semi Final Varietal Trial Set -II

Final Varietal Trial:

In final varietal trial, the mean maximum CCS% was recorded by S2014SL-1359 (12.79) followed by S2013US-917 (12.60) as compared to HSF-240 (12.22) & CPF-249 (12.77) as standard [Table-5.1(iii)].

In this final varietal trial, ten (10) different sugarcane clones/varieties, including CPF-249 and HSF-240 as standard, were studied. The quality parameters showed that CCS% gradually improved with the maturity of crop. The sugar recovery generally was lower during the month of October and November but gradually enhanced up to the month of January and February.

Table [Table-5.1(iii)]. Qualitative Analysis (CCS %) of Final Varietal Trial.

Sr. No.	Variety/Clone	18- Oct	1- Nov	17- Nov	2-Dec	18- Dec	2-Jan	17- Jan	3-Feb	Avg. (Nov. to 03 Feb.) CCS%
1	S2012M-1379	8.89	10.61	10.78	11.02	12.35	12.45	12.72	12.8	11.82
2	S2013M-45	9.63	10.68	11.44	11.63	12.34	12.56	12.66	12.68	12.0
3	S2013US-917	10.92	10.96	11.43	12.53	12.98	13.1	13.25	13.96	12.6
4	S2014SL-1359	11.72	11.84	11.91	12.41	12.77	13.34	13.40	13.88	12.79
5	S2014SL-2200	10.43	10.75	11.98	12.81	12.92	13.14	13.2	13.66	12.64
6	S2014SL2290	9.27	10.31	11.19	11.48	12.74	13.46	13.47	13.69	12.33
7	S2014SL2350	9.37	10.14	11.41	11.98	12.31	12.49	12.62	12.61	11.94
8	S014SL2477	11.03	11.34	11.42	11.83	12.81	12.9	13.3	13.81	12.49
9	CPF249	10.68	11.37	12.25	12.91	13.01	13.05	13.25	13.53	12.77
10	HSF240	9.53	10.75	11.13	11.44	12.56	12.91	13.15	13.6	12.22

[Table-5.1(iii)] Qualitative Analysis (CCS %) of Final Varietal Trial.

2. <u>SCREENING OF PROMISING SUGARCANE CLONES FOR GUR</u> <u>PRODUCTION AND QUALITY</u>

To find out new promising cane clones for gur production and their quality evaluation. The cane samples of seven different promising sugarcane varieties / clones were tested for gur production and its quality [Table-5.2(i)]. The gur samples of each line/clone were analyzed for color before and after storage of 90 days [Table-5.2(i & ii)]. On the other hand, storage effect for 90 days at ambient conditions showed darkening of color (Table-5.2) and moisture reduction in the gur of all cane clones. The analysis results depicted that sugarcane clones S2003-US-633 and S2003-US-127 produced significantly higher gur % juice. As a result, it was concluded that with respect to good nutritional aspect, lighter color and good keeping quality, sugarcane clones S2003-US-633 and S2003-US-634

Varieties	Gur (%) Juice
S2002-US-133	17.18 CD
S 2009-SA-111	16.80 D
S2003-US-127	18.52 B
S2003-US-633	19.64 A
S2003-US-778	17.13 CD
HSF-240 (CHK)	17.72 C
LSD	0.66

[Table-5.2(i)]. Comparison of Gur % juice in different sugarcane varieties

[Table-5.2(ii)] Comparison of Gur color in different sugarcane varieties

Varieties	Appearance	2
v al lettes	B.S	A.S
S2002-US-133	Light Brown	Brown
S 2009-SA-111	Creamy Golden Brown	Dark Brown
S2003-US-127	Light Brown	Brown
S2003-US-633	Golden Brown	Light Brown
S2003-US-778	Creamy Light Brown	Dark Brown
HSF-240 (CHK)	Shiny Brown	Dark Brown

* B.S = Before Storage ** A.S = After Storage

3. SURVEY AND COLLECTION OF SUGARCANE SAMPLES FROM FARMER FIELD FOR QUALITY ANALYSIS

A survey study was conducted to evaluate the qualitative performance of sugarcane varieties cultivated in different areas of Faisalabad district. The sugarcane samples of five varieties (HSF-240, CPF-246, CPF-248, CPF-249 and CP 77-400) were collected from November to January (2019-20). The cane juice was extracted from collected samples and analyzed for sugar recovery (%) [Table-5.3(i)].

Sr.	Variety		Sugar Reco	very (%)					
No		Sumandri	Tandlianwala	Jaranwala	ChakJhumra				
1	HSF-240	11.15	11.35	10.97	10.57				
2	CPF-246	12.44	11.75	11.55	11.30				
3	CPF-248	11.41	11.66	11.85	10.87				

4	CPF-249	10.92	11.13	11.71	11.33
5	CP77-400	12.10	12.13	11.41	11.69

The results described that sugar recovery % increases in December and January as compared to month of November [Table-5.3(ii & iii)]. The sugar recovery (%) of different varieties and from different location was in the range of 10.92 to 12.44%, 11.33 to 12.90 % and 11.71 to 12.81 % in the month of November, December (2019) and January (2020) respectively.

Sr.
NoVarietySugar Recovery (%)1HSF-24011.7112.1111.9111.57

12.45

12.11

11.97

12.45

12.38

11.85

12.55

11.93

12.70

11.74

11.33

12.40

2

3

4

5

CPF-246

CPF-248

CPF-249

CP77-400

12.90

11.95

11.82

12.33

[Table-5.3(ii)] Average Sugar Recovery (%) for the month of December, 2019

[Ta	ble-5.3(iii)]. A	Average Sugar	Recovery (%	(6) for the month	of January, 2020

Sr.		Sugar Recovery (%)							
No	Variefy		Jaranwala	ChakJhumra					
1	HSF-240	12.28	11.90	11.71	12.20				
2	CPF-246	12.67	12.55	12.35	12.81				
3	CPF-248	11.95	12.11	12.31	12.55				
4	CPF-249	12.11	12.55	12.27	11.95				
5	CP77-400	12.71	12.55	12.81	12.27				

4. EVALUATION OF MINERAL NUTRIENT CONTENTS IN JUICE SAMPLES OF DIFFERENT SUGARCANE VARIETIES

The purpose of this study is to evaluate the mineral nutrients in juice of different sugarcane varieties/clones. The results depicted that the maximum sugar recovery 12.15 and 12.69 % was observed in CPF-247 and CPF-246 in the month of December and January respectively [Table-5.4(i)]. Similarly, the EC value of sugarcane juice was also higher in CPF- 246. Maximum K (136 Mm) and Zn (8.15 mg/L) in sugarcane juice were observed in CPF-246 as compared to HSF-240. The sugar recovery positively correlates with K, Zn and Fe contents of sugarcane juice [Table-5.4(ii)] but sugar recovery decreases as Na and Cl contents in cane juice increases.

Sr. No.	Variety	S. Rec. (%) December	S. Rec. (%) January
1	HSF-240	11.55	12.25
2	CPF-246	12.11	12.69
3	CPF-247	12.15	12.49
4	CPF-248	12.13	12.41
5	CPF-249	12.10	12.45

[Table-5.4(i)] Average Sugar Recovery (%) in different sugarcane varieties

[Table 4(ii)] Relationship of Juice EC with mineral nutrients in different sugarcane varieties

Sr. No.	EC (mSm ⁻¹)	K (mM)	Na (mM)	Cl (mM)	Zn (mg/L)	Cu (mg/L)	Fe (mg/L)
1	509	89	5.11	48	4.51	2.07	75
2	581	136	3.60	31	8.15	2.70	89
3	545	111	3.58	33	5.67	2.68	73
4	542	114	3.87	34	4.58	2.14	71
5	534	95	4.75	45	5.11	2.36	65

5. <u>BALANCE USE OF MACRO AND MICRONUTRIENTS TO INCREASE SUGAR</u> <u>YIELD PER UNIT AREA UNDER CHANGING SCENARIO OF CLIMATE</u> <u>CHANGE</u>

The purpose of this study was to evaluate the effect of macro and micronutrients on cane yield and juice quality. The results depicted [Table-5.5(i)] that in treatment T_3 and T_8 , maximum and significantly higher cane yield (112.33 and 117.67 t/ha) was recorded, where zinc fertilizer was incorporated as compared to T_2 (94.33 t/ha).

[Table-5.5(i)] Effect of macro and micronutrients on sugarcane yield

Treatments	Yield (t ha ⁻¹)	Sugar Yield (t ha ⁻¹)
T1 Control	43.33 E	5.17 E
T2 NPK	94.33 CD	11.58 CD
T3 NPK + Zn	112.33 AB	13.94 AB
T4 NPK + Cu	97.67 C	11.98 C
T5 NPK + Fe	95.33 CD	11.66 CD
T6 NPK + B	90.33 D	11.12 D
T7 NPK + Half dose (Zn+Cu+Fe+B)	108.33 B	13.27 B
T8 NPK + Full dose (Zn+Cu+Fe+B)	117.67 A	14.45 A
LSD	6.58	0.82

While the treatments T_7 and T_3 were statistically at par but significantly higher as compared to control (43.33 t/ha). The sugar yield was also found higher in zinc fertilizer treated treatments as compared to control.

6. SUGARCANE RESEARCH STATION, KHANPUR

1. PRELIMINARY VARIETAL TRIAL OF SUGARCANE

This genotypic experiment consisted of eight sugarcane strains including SPF-234 as standard. The investigation was laid out in RCBD with three replications and a net plot size of 3.6 x 10 m. The statistical analysis of the data (Table-6.1) reveals that sugarcane strain S2011-SL-392 gave the highest cane yield of 99.00 t/ha. Sugarcane genotype PSR-97-41 surpassed the list in field brix (21.66%).

 Table 6.1 Performance of sugarcane varieties under Preliminary varietal trial

 (2019-20)

Sr.	Variety	Germination %	Tillers	Cane stand	Cane Yield	Field Brix
No.			Plant ⁻¹	(000/ha)	(t/ha)	(%)
1	S2008-FD-25	42.47b	1.99c	96.39	70.91b	19.00d
2	VMC-88-354	65.74a	3.27a	105.09	80.60ab	19.66cd
3	S-2011-SL-62	67.72a	1.99c	109.29	81.43ab	21.00ab
4	S2011-SL-392	67.53a	2.49bc	103.12	99.00a	20.33bc
5	PSR-97-41	64.75a	1.96C	112.96	79.72ab	21.66a
6	PSR-97-45	61.80a	2.46bc	114.75	85.74ab	20.66abc
7	M-2238-89	61.17a	2.12bc	102.96	82.37ab	21.00ab
8	SPF-234	61.30a	2.69ab	94.60	81.85ab	20.33bc
Ι	LSD 0.05	6.75	0.64	NS	22.56	1.21

Values with different letter(s) differ significantly (P=0.05)

2. <u>SEMI-FINAL VARIETAL TRIAL</u>

Two sets of Semi-Final Varietal trial comprising of 8 clones including two standard varieties i.e. SPF-234 and CPF-249 were layout in RCDB with 3 replications with the net plot size of 3.6 m x10 m. The data pertaining to germination, tillering, cane count, cane yield, and field brix were recorded (Table-6.2). The periodic brix data were recorded on monthly basis from November 15, 2019 to February 15, 2020. The sugarcane clone VMC-87-599 surpassed the set of clones with a final cane yield of 105.04 t/ha. Sugarcane genotype S2009-SA-8 surpassed the list in field brix (23.00%). On the basis of data recorded 4 clones were selected and promoted to final varietal trials stage for further study.

			<u>(2019-</u>	<u>20)</u>		
S.	Variety	Germin-	Tillers	Cane stand	Cane Yield	Field Brix
No		ation %	Plant ⁻¹	000/ha	t/ha	(%)
1	S2009-SA-8	52.51c	2.76ab	103.18	85.18bc	23.00a
2	S2009-SA-79	56.60bc	2.18abc	98.92	84.46c	19.00de
3	S2009-SA-111	55.55c	2.37abc	105.71	86.85bc	21.33b
4	VMC-87-599	63.83a	2.13bc	103.12	105.04a	19.67cd
5	SL-96-128	65.86a	1.85c	104.69	102,57ab	18.67e
6	SL-96-175	54.57c	2.63ab	105.65	100.79abc	19.00de
7	CPF-249	62.53ab	2.88a	102.96	93.21abc	21.00b
8	SPF-234	53.95c	2.73ab	101.95	91.97abc	20.00c
	LSD 0.05	6.90	0.73	NS	17.67	0.98

 Table- 6.2. Performance of sugarcane varieties under Semi Final varietal trial

 (2019-20)

3. FINAL VARIETAL TRIAL

This trial was conducted to evaluate the biometric and quantitative performance of eight (08) clones against one standard variety viz. SPF-234. The experiment was laid out in RCBD three repeats with net plot size of 3.6 m x 10 m. Out of eight clones, one (S2008-AUS-133) was promoted as it exhibited better cane yield and sugar recovery as compared to standard varieties (Table-6.3). Whereas two were rejected due poor growth and cane yield and five were retained for further studies.

Table-6.3. Performance of sugarcane varieties und	
<u>(2019-20)</u>	

			<u>(2019-2</u>	<u>))</u>		
S.	Variety	Germin-	Tillers	Cane stand	Cane Yield	Field Brix
No		ation %	Plant ⁻¹	000/ha	t/ha	(%)
1	S2008-FD-19	59.57ab	2.20ab	103.18ab	93.06bc	21.33abc
2	S2008-M-42	63.10a	2.60ab	106.30ab	97.43abc	23.00a
3	S2006-US-658	59.38ab	1.91b	99.07ab	95.18bc	22.33ab
4	S2008-AUS-133	62.13a	2.15ab	103.12ab	110.68a	20.67bc
5	S2008-AUS-134	55.49bc	2.08ab	109.01a	101.57ab	21.67abc
6	S2008-AUS-138	59.44ab	1.77b	100.96ab	101.61ab	22.33ab

7	S2009-SA-57	49.63c	2.90a	86.97b	86.85c	21.00bc
8	SPF-234	40.62d	2.52ab	98.89ab	91.97bc	20.00c
	LSD 0.05	6.21	0.92	20.70	13.98	1.68

4. ZONAL VARIETAL TRIAL

This trial consisted of eight sugarcane strains planted for their quantitative as well as qualitative evaluation under extended growth period by planting them in the month of September. The genotypic trial was laid out in RCBD with a net plot size of 3.6 x 10 m and three replications. The promising sugarcane clone CPF-246 surpassed the list in cane yield (Table-6.4) by producing 102.19 t/ha stripped canes and also surpassed the list in field brix (22.67%).

S.	Variety	Germin-	Tillers	Cane stand	Cane Yield	Field Brix
No		ation %	Plant ⁻¹	000/ha	t/ha	(%)
1	CPF-246	68.21a	3.2ab	103.89ab	102.19a	22.67a
2	SO2US-133	64.75ab	2.51bcd	93.52abcd	79.08bc	22.67a
3	CPF-247	61.60bcd	2.3cd	88.05bcd	74.62c	21.00bc
4	VMC-87-599	64.82ab	2.36cd	93.98abcd	90.83ab	19.67c
5	CPF-248	63.77abc	2.25 cd	101.94abc	91.57ab	21.33ab
6	SO9SA-111	57.16d	1.80d	83.80d	75.28c	22.33ab
7	CPF-249	58.76cd	3.42a	107.13a	98.04a	22.00ab
8	SO8M-42	59.93bcd	2.97abc	86.66cd	82.33bc	22.00ab
	LSD 0.05	5.36	0.83	16.57	12.75	1.60

Table-6.4. Performance of sugarcane varieties under Zonal varietal trial (2019-20)

Values with different letter(s) differ significantly (P=0.05)

5. National Uniform Varietal Yield Trial (2017-19)

A trial comprising of ten (10) sugarcane varieties was conducted to check their performance for qualitative and quantitative traits in national varietal trial against standard varieties SPF-234 and HSF- 240. The experiment was planted according to RCBD with three replications. The genotype S02-US-133 yielded highest cane tonnage of 130.19 t ha⁻¹ as against the lowest (71.82 t ha⁻¹) for S08-M-42. Maximum field brix (22.67%) was recorded for S02-US-133 whereas lowest (19.67%) was observed for TH-1312 (Table-6.5).

S.	Variety	Germination	Tillers	Cane stand	Cane Yield	Field Brix
No		%	Plant ⁻¹	000/ha	t/ha	(%)
1	S08-M-42	62.11a	2.96abc	105.36ab	71.82c	22.67a
2	S05-US-54	49.26c	3.04ab	98.72b	63.33c	19.33c
3	S03-US-127	58.33ab	2.19cd	127.36ab	114.73ab	22.33ab
4	S02-US-133	53.15bc	2.66bc	131.30ab	130.19a	22.67a
5	S08-US-633	60.12ab	3.01ab	133.74a	125.68a	22.33ab
6	S08-AUS-133	62.53a	1.66d	99.05b	116.18a	22.33ab
7	TH-1312	61.60a	2.49bc	121.96ab	113.49ab	19.67c
8	TH-1412	28.76d	3.18ab	110.99ab	82.22bc	21.67ab
9	HSF-240	56.48abc	3.47a	123.45ab	127.89a	21.00abc
10	SPF-234	55.80abc	2.83abc	117.13ab	130.28a	20.67bc
	LSD 0.05	7.64	0.79	15.94	15.86	1.69

Table-6.5. National Uniform Varietal Yield Trial of Sugarcane [2017-19(1)]

6. NATIONAL UNIFORM VARIETAL YIELD TRIAL (2018-20)

A trial comprising of fifteen (15) sugarcane varieties was conducted to check their performance for qualitative and quantitative traits in national varietal trial against standard varieties SPF-234 and CPF-249. The experiment was planted according to RCBD with three replications. The genotype SLSG-1283 yielded highest cane tonnage of 145.96 t ha⁻¹ as against the lowest (85.91 t ha⁻¹) for CPTJ-1549. Maximum field brix (22.33%) was recorded for CPTJ-349 whereas lowest (17.00%) was observed for SLTH-1510 (Table-6.6).

Sr.	Variety	Germination	Tillers	Cane stand	Cane Yield	Field Brix
#.		%	Plant ⁻¹	000/ha	t/ha	(%)
1	SLTH-1510	61.11a	1.45cde	123.80ab	98.34defg	17.00e
2	CPFG-14	43.42cd	2.36a	107.50bc	133.51ab	19.00cde
3	CPFG-16	42.43d	2.37a	121.11ab	91.61efg	18.33cde
4	VMC-87-599	59.75a	1.33de	135.76a	131.13ab	18.67cde
5	S-2009-SA-111	46.64cd	1.14e	113.70abc	88.20efg	18.00de
6	S-96-SP-302	57.72a	1.01e	133.72a	131.02ab	17.33e
7	LAMPTJ-76-803	59.81a	1.95abcd	130.09ab	120.59bc	19.00cde
8	CPTJ-349	55.00ab	1.71abcd	107.22bc	114.47bcd	22.33a
9	CPTJ-1549	59.93a	1.32de	108.98bc	85.91fg	19.00cde
10	SPF-234	48.33bcd	2.25ab	122.78ab	122.46bc	19.67bcd
11	CPF-249	49.38bc	2.12abc	118.98abc	108.99cde	20.33abc
12	SLSG-1283	30.27e	1.41cde	125.84ab	145.96a	22.33a
13	CPSG-2718	20.86f	1.63bcde	117.96abc	119.56bcd	21.67ab
14	CPSG-2415	35.61e	1.59bcde	133.33a	102.65cdef	20.00bcd
15	MH-91-CP-582	31.85 e	1.46cde	97.78c	80.14g	21.33ab
	LSD 0.05	6.70	0.71	23.07	21.81	2.18

Table-6.6. National Uniform Varietal Yield Trial of Sugarcane [2018-20(11)]

7. WATER USE EFFICIENCY TRIAL

Sugarcane is a water loving crop. The present study was conducted to explore the water use efficiency of five irrigation levels for sugarcane crop. The experiment was planted in RCBD with three replications and a net plot size of 7.2×10 m. Five levels of irrigation were maintained in this study All strips irrigation (14Nos.) enhanced the yield (104.00 t/ha) of SPF-234 (Table-6.7).

S.	Variety	Germin-	Tillers	Cane stand	Cane Yield	Field Brix
No		ation %	Plant ⁻¹	000/ha	t/ha	(%)
	Alternate strip					
1	irrigation(16 No)	63.29	2.08	94.52	74.46b	20.67
	All strips					
2	irrigations(12 No)	64.78	2.38	104.03	97.02ab	20.33
	All strips					
3	irrigations(14 No)	70.88	3.01	111.67	104.00a	20.00
	All strips					
4	irrigations(16 No)	62.77	2.87	102.57	84.82ab	19.67
	All strips					
5	irrigations(18 No)	66.20	3.10	93.75	87.01ab	20.00
	LSD 0.05	NS	0.64	NS	24.69	NS

Table-6.7. Water use efficiency trial (2019-20)

8. SOWING METHOD TRIAL OF SUGARCANE

This trial has been conducted to quantify the impact of different sowing methods on growth and yield of sugarcane crop. The trial was laid out in RCBD with a net plot size of 6 x 7.5 m and three replications. Five treatments Pit planting (2×2 ft), Trench planting (RxR=4ft), Ladder planting (RxR=4ft), Trench planting (RxR=4ft) followed by planking at wattar and early hill planting (RxR=2.5ft) were included in the trial. Maximum cane yield of 108.85 t/ha was given by pit planting method followed by trench planting with planking 102.73 t/ha (Table-6.8).

Table-6.8. Sowing Method Trial of Sugarcane (2019-20)

S.	Treatment	Germin-	Tillers	Cane stand	Cane Yield	Field Brix
No		ation %	Plant ⁻¹	000/ha	t/ha	(%)
P ₁	Pit planting	60.18a	2.07b	128.61	108.85a	19.33
P ₂	Ladder Planting	56.25a	1.93b	114.21	87.94c	19.67
P ₃	Early Hill Planting	35.23b	3.18a	131.34	94.76bc	20.00
P ₄	Rumber planting	39.72b	2.94a	131.25	102.73a	20.67
P ₅	Trench Planting	55.73a	2.01b	121.16	100.96ab	20.33
	LSD 0.05	6.80	0.86	N.S	7.91	NS

Values with different letter(s) differ significantly (P=0.05).