ANNUAL PROGRAMME OF RESEARCH WORK

KHARIF - 2017

SOIL SALINITY RESEARCH INSTITUTE, PINDI BHATTIAN

TABLE OF CONTENTS				
Sr. #	New experiments	Page #		
1	Response of sunflower to boron application in saline sodic soil	1		
2	Growth performance of high density guava orchard with modified rhizosphere in salt affected soils	1		
3	Seed priming and amendments application to improve pearl millet yield in saline sodic soils	2		
4	Comparison of different sowing methods for improving yield and water use efficiency under brackish water irrigation.	3		
	On-going experiments			
5	Fertilizer requirement of direct seeded coarse rice in saline sodic soil	3		
6	Fertilizer requirement of direct seeded fine rice in saline sodic soil	5		
7	Effect of seed priming and foliar application of salicylic acid on nutrient uptake of direct seeded rice in saline sodic soil	7		
8	Enhancing the solubility of gypsum with h ₂ so ₄	10		
9	Use of hyacinth compost in salt affected soils	11		
10	Rehabilitation of saline sodic soils through cultivation of salt tolerant grasses	13		
11	Response of tamarind seedlings under different levels of salinity and sodicity	13		
12	Response of maize-wheat rotation under brackish water management strategies	14		
13	Long term effect of high rsc water on physical properties of soil under rice- mustard rotation	16		
14	Integrated use of sulphur and organic amendment for reclamation of saline sodic soil in wheat-pearl millet rotation	17		
15	Long term effect of different organic manures and gypsum on physical properties of saline sodic soil in wheat-rice rotation	18		
16	Strategies for utilization of brackish water for strawberry-mung rotation	19		
17	Dissemination of technologies for safe utilization of brackish water	20		
18	Effectiveness of different management strategies for high rsc irrigation water	21		
19	Temporal changes in the quality of irrigation water under climate changing scenario	22		
20	Comparative study of rationability of different sugarcane clones / varieties in salt affected soils	25		
21	Yield improvement of direct sown rice on raised beds using priming techniques in salt affected soils	26		
22	Management of saline sodic water by using different ammendments and sowing techniques	27		
23	Utilization of salt affected land using pit planting technique for sugercane	28		
24	Performance of new sugarcane clones/varieties in salt affected soils	29		
25	Effect of different irrigation frequencies on direct seeded rice in salt affected soil	30		
26	Maintenance of germ plasm/ genepool tolerant to salinity	31		
27	Developing high yielding fine grain rice lines for salinity tolerance	32		
28	Screening of rice germplasm in salt affected soil	33		
29	Yield evualtion trial for advance rice lines/varites in salt affected soil.	34		
30	National uniform rice yield trial	34		
31	Maintenance of salt tolerant rice variety shaheen basmati	35		

ANNUAL RESEARCH PROGRAMME OF WORK KHARIF-2017

TITLE 01:	RESPONSE OF SUNFLOWER TO BORON APPLICATION IN SALINE			
	SODIC SOIL			
OBJECTIVE	Boron has ability to improve sunflower yield due to improved K/Na ratio under salt			
	stress condition. The experiment has been planned to determine the optimum level			
	of boron for yield improvement of sunflower in saline-sodic soil.			
RESEARCHER	Dr. Muhammad Sarfraz, Amar Iqbal Saqib and Dr. Muhammad Anwar Zaka			
DURATION	2017-2019			
LOCATION	Research Farm, SSRI, Pindi Bhattian			
TREATMENTS	T ₁ ; Control (without B application)			
	T ₂ : B application @ 1.0 kg ha ⁻¹			
	T_3 : B application @1.5 kg ha ⁻¹			
	T_4 : B application @ 2.0 kg ha ⁻¹			
	T ₅ : B application @ 2.5 kg ha ⁻¹			
	T_6 : B application @ 3.0 kg ha ⁻¹			
METHODOLOGY	A moderately saline –sodic field will be selected. Soil samples will be collected and			
	analysed for pH _s , EC _e , SAR, O.M. available P, extractable K and available B. Field			
	will be prepared and leveled. Sunflower crop will be sown on ridges in wattar			
	condition keeping ridge to ridge distance 75 cm and plant to plant distance 23 cm.			
	Recommended dose of fertilizer will be 125-75-60 NPK kg ha ⁻¹ . Whole P, K , B			
	and $1/2$ N will be applied at the time of sowing and remaining $1/2$ N will be			
	applied at flowering stage. Source of B will be Boric acid. Tested variety will be			
	FH -331. Experimental Design will be RCBD. Plot size will be 6m x 4 m.			
	Replications will be three. Crop will be harvested at maturity. Data on plant height,			
	Head Diameter, Total biomass, Achene yield will be recorded. Seed will be			
	analysed for N P K and B contents. Post-harvest soil samples will be analysed for			
	pH _s , EC _e , SAR, O.M. available P,extractable K and available B.			
PREVIOUS YEAR	New Experiment			
RESULTS				

TITLE 02:	GROWTH PERFORMANCE OF HIGH DENSITY GUAVA		
	ORCHARD WITH MODIFIED RHIZOSPHERE IN SALT		
	AFFECTED SOILS		
OBJECTIVE	To determine salinity / sodicity tolerance and performance of high density		
	guava plantation under modified rhizosphere techniques.		
RESEARCHERS	Amar IqbalSaqib , Dr. M. Anwar Zaka		
DURATION	2017-2027		
LOCATION	SSRI, Research Farm.		
NATURE OF	Field Experiment		
EXPERIMENT			
TREATMENTS	A. Planting Geometry		
	1. 6 x 6 meter		
	2. 6 x 3 meter		
	3. 3 x 3 meter		
	B. Treatments		
	T_1 = Pits refilling with excavated soil		
	$T_2 =$ Pits refilling with 100% silt		

	T_3 = Pits refilling with 50% excavated soil + 50% silt			
	$T_4 = T_3 + FYM 1:20$			
	$T_5 = T_1 + Gypsum @ 100\% of soil GR.$			
	$T_6 = T_1 + Gypsum @ 5 x 100\% of soil GR.$			
METHODOLOGY	A saline sodic field will be selected after initial soil analysis .Field will be			
	prepared and leveled. Experiment will be laid out in split plot having five			
	replications. Planting geometry will be kept in main plots and			
	amendments in sub-plots. The pits will be made having size 1x1x1 meter			
	mechanically and filled according to treatments. The pits will be irrigated			
	and after thirty days guava plants will be transplanted having uniform size.			
	Fertilizer will be applied according the recommendation of the			
	Horticulture department. All agronomic and protection measures will be			
	followed according to the required situation. Data regarding plant height,			
	stem diameter, plant canopy, No. of fruits and mortality % will be			
	recorded. Design will be split plot with five replications.			
	Plant analysis : Leaves will be collected from each treatment and analyzed			
	for Na and K after one year.			
	Soil analysis: Soil samples will be analyzed for pH _s , EC _e , SAR after one			
	year.			
PREVIOUS	New experiment			
RESULTS				

TITLE 03:	SEED PRIMING AND AMENDMENTS APPLICATION TO			
	IMPROVE PEARL MILLET YIELD IN SALINE SODIC SOILS			
OBJECTIVE	To evaluate the combined effect of seed priming and amendments			
	application for yield improvement of pearl millet in saline sodic soils			
RESEARCHERS	Manzoor Hussain, M.Q.Nawaz and Dr. M. Anwar Zaka			
DURATION	2017-2019			
LOCATION	Research Farm, SSRI, Pindi Bhattian			
NATURE OF	Field Experiment			
EXPERIMENT				
TREATMENTS	A) Amendments			
	1) Control (No amendment)			
	2) Poultry manure @ 20 t ha^{-1}			
	3) H_2SO_4 equivalent to 25 % GR of soil			
	B) Priming Agents			
	1) $CaCl_2(2\%)$			
	2) Single super phosphate (1%)			
	3) MgSO ₄ (2%)			
	4) Potassium dihydrogen phosphate (2%)			
	5) Potassium Chloride (2%)			
METHODOLOGY	A salt affected field will be selected, leveled and well prepared sowing of			
	pearl millet. Seed will be primed for 8 hours. Crop will sow by			
	maintaining P x P distance 10 cm and R x R distance of 30 cm.			
	Recommended dose of fertilizer (80-60-60 NPK kg ha ⁻¹) will be applied.			
	All P will be applied at sowing and N will be applied in two splits.			
	Experiment will be laid out in split plot design with three replications.			
	Amendments will be kept in main plots and priming agents will be kept in			
	sub-plot. Sub-plot size will be 4 m x 6 m. All other agronomic & plant			
	protection measures will be adopted uniformly. Data of yield and yield			
	component will be recorded. Soil samples will be collected and analyzed			
	for pH _s , EC _e and SAR before sowing and after the harvest of crop.			

PREVIOUS	New Experiment				
RESULTS	1				
TITLE 04:	COMPARISON OF DIFFERENT SOWING METHODS FOR				
	IMPROVING YIELD AND WATER USE EFFICIENCY UNDER				
	BRACKISH WATER IRRIGATION.				
OBJECTIVE	To compare the efficacy of different sowing methods for yield and water				
	use efficiency improvement using brackish water in Rice-Wheat rotation.				
RESEARCHERS	M. Rizwan and Dr. M. Anwar Zaka				
DURATION	2017-2020				
LOCATION	Research Farm, SSRI, Pindi Bhattian				
NATURE OF	Field Experiment				
EXPERIMENT					
TREATMENTS	Sowing Methods:				
	 Broadcast sowing (Flat) 				
	• Drill sowing (Flat)				
	Ridge Sowing				
	Bed sowing				
METHODOLOGY					
	basmati) by direct seeding according to treatment plan. Irrigations will be				
	applied using cut throat flume. Bed width will be 2 feet. Recommended				
	dose of fertilizer (150-85-60 NPK kg ha ⁻¹) will be applied. No. of				
	irrigations for whole season will be recorded to calculate the delta of				
	water and ultimately water use efficiency will be evaluated. Data of yield				
	and yield components will be recorded. Soil samples before start of study				
	and after harvest of each crop will be collected and analyzed for pH _s ,				
	EC _e , SAR, HC and BD. Design will be RCBD with three repeats having				
	plot size 15m x 10m.				
PREVIOUS	New Experiment				
RESULTS					

ONGOING RESEARCH EXPERIMENTS

TITLE 05:	FERTILIZER REQUIREMENT OF DIRECT SEEDED COARSE				
	RICE IN SALINE SODIC SOIL				
OBJECTIVE	To determine opt	imum rate of N	PK for better yield	and nutrient uptake of	
	direct seeded coarse rice in saline sodic soil.				
DURATION	2016-2018				
RESEARCHERS	Dr. M. Sarfraz				
LOCATION	Agri. Research Farm, SSRI, Pindi Bhattian				
NATURE OF	Field Experiment				
EXPERIMENT					
TREATMENTS	Treatments	$N(kg ha^{-1})$	$\mathbf{P_2O_5}(\text{kg ha}^{-1})$	$\mathbf{K}_{2}\mathbf{O}$ (kg ha ⁻¹)	
	T ₁	0	0	0	
	T ₂	0	86	60	
	T ₃	87	86	60	
	T ₄	174	86	60	
	T_{5} 261 86 60				
	T ₆	174	0	60	

	т	174	42	(0
	T ₇	174	43	60
	T ₈	174	129	60
	T ₉	174	86	0
	T ₁₀	174	86	30
	T_{11}^{10}	174	86	90
METHODOLOGY	Saline sodic field	d will be selected	ed, prepared and le	eveled. Composite soil
	samples will be	collected and an	alyzed for salinity	/sodicity. Experiment
	will be laid out in RCBD with three replications having plot size $6 \times 4 \text{ m}^2$.			
	Treatments will be applied according to treatment plan. Sowing of direct			
	seeded rice will be done with hand drill in wattar condition. Test variety			
	will be KSK-133. Whole P_2O_5 and K_2O and 1/3 N will be applied at the			
	time of sowing to rice crop. Remaining N will be applied 20 and 40 days			
	after sowing. Zinc sulphate (33%) @ 12.5 kg ha ⁻¹ will be applied 15 days			
	after sowing. Crop will be harvested at maturity. Paddy and Straw yield			
	data will be recorded. Paddy and straw samples will be analyzed for NPK			
	concentration and their uptake. Soil samples will be collected after			
	harvesting of rice and analysed for ECe, pHs, SAR, O.M., available P			
	and extractable K	.		
PREVIOUS	Kharif 2016			
RESULTS				

Pre-sowing Soil Analysis

= 8.54
$= 5.18 (dS m^{-1})$
$=33.58 \pmod{L^{-1}}^{1/2}$
= 0.39
$= 7.40 \text{ mg kg}^{-1}$
$= 106.0 \text{ mg kg}^{-1}$

Effect of different fertilizer rates on paddy yield and 1000 paddy weight of direct see	ded
coarse rice	

Treatments	Paddy yield	1000 paddy weight
NPK (kg ha ⁻¹)	$(t. ha^{-1})$	(g)
T ₁ (0-0-0)	1.41 H	16.90 I
T ₂ (0-86-60)	1.94 G	17.80 H
T ₃ (87-86-60)	2.35 EF	24.60 F
T ₄ (174-86-60)	2.97 BC	28.20 C
T ₅ (261-86-60)	3.26 AB	28.90 AB
T ₆ (174-0-60)	1.88 G	17.20 I
T ₇ (174-43-60)	2.16 FG	22.50 G
T ₈ (174-129-60)	3.47 A	29.40 A
T ₉ (174-86-0)	2.56 DE	26.00 E
T ₁₀ (174-86-30)	2.82 CD	27.30 D
T ₁₁ (174-86-90)	3.14 B	28.60 BC
LSD	0.3264	0.5328

TreatmentsNPK (kg ha ⁻¹)	Total (N %)	Total (P %)	Total (K %)
T ₁ (0-0-0)	1.38 J	0.18 D	0.24 F
T ₂ (0-86-60)	1.94 G	0.20 CD	0.28 E
T ₃ (87-86-60)	2.05 FE	0.23 ABC	0.34 CD
T ₄ (174-86-60)	2.16 BCD	0.26 AB	0.37B
T ₅ (261-86-60)	2.22 AB	0.27 A	0.38 A
T ₆ (174-0-60)	1.72 H	0.20CD	0.26 E
T ₇ (174-43-60)	1.98 FG	0.22 BCD	0.32 D
T ₈ (174-129-60)	2.28 A	0.27 A	0.39 AB
T ₉ (174-86-0)	2.08 DE	0.24 ABC	0.36 AB
T ₁₀ (174-86-30)	2.12 CDE	0.26 AB	0.36 BC
T ₁₁ (174-86-90)	2.22 BC	0.26 AB	0.39 AB
LSD	0.0912	0.0428	0.0275

Effect of different rates of fertilizer application on NPK contents of paddy in direct seeded coarse rice

Post Harvest Soil Analysis

Treatments NPK (kg ha ⁻¹)	рН _s	$\frac{\mathbf{EC}}{\mathrm{dS} \mathrm{m}^{-1}}$	$\frac{\mathbf{SAR}}{(\mathrm{mmol}^{-1})^{1/2}}$	O.M. %	Available P mg kg ⁻¹	Extractable K mg kg ⁻¹
T ₁ (0-0-0)	8.53	5.12	31.16	0.36	6.20	102.0
T ₂ (0-86-60)	8.53	5.11	30.03	0.41	8.20	114.0
T ₃ (87-86-60)	8.52	5.09	29.84	0.43	8.40	112.0
T ₄ (174-86-60)	8.52	5.07	29.47	0.47	8.42	110.0
T ₅ (261-86-60)	8.51	5.06	29.12	0.51	8.60	107.0
T ₆ (174-0-60)	8.51	5.05	29.02	0.45	5.80	116.0
T ₇ (174-43-60)	8.51	5.03	28.90	0.41	7.20	114.0
T ₈ (174-129-60)	8.50	5.02	28.79	0.47	8.80	110.0
T ₉ (174-86-0)	8.50	5.02	28.57	0.45	8.40	98.6
T ₁₀ (174-86-30)	8.49	5.02	28.51	0.47	8.42	108.0
T ₁₁ (174-86-90)	8.49	5.01	28.41	0.49	8.60	118.0

TITLE 06:	FERTILIZER REQUIREMENT OF DIRECT SEEDED FINE RICE
	IN SALINE SODIC SOIL
OBJECTIVE	To determine optimum rate of NPK for better yield and nutrient uptake of
	direct seeded fine rice in saline sodic soil.
DURATION	2016-2018
RESEARCHERS	Dr. M. Sarfraz
LOCATION	Agri. Research Farm, SSRI, Pindi Bhattian
NATURE OF	Field Experiment
EXPERIMENT	

TREATMENTS	Treatments	$N(kg ha^{-1})$	$P_2O_5(kg ha^{-1})$	$\mathbf{K}_{2}\mathbf{O}$ (kg ha ⁻¹)
	T ₁	0	0	0
	T ₂	0	86	60
	T ₃	75	86	60
	T_4	150	86	60
	T ₅	225	86	60
	T ₆	150	0	60
	T ₇	150	43	60
	T ₈	150	129	60
	T ₉	150	86	0
	T ₁₀	150	86	30
	T ₁₁	150	86	90
METHODOLOGY				eveled. Composite soil
	1			/sodicity. Experiment
				ving plot size 6 x 4 m^2 .
				plan. Sowing of direct
				ondition Test variety
				1 1/3 N will be applied
				Il be applied 20 and 40 ha^{-1} will be applied 15
				ha ⁻¹ will be applied 15 writy. Paddy and Straw
		-		es will be analyzed for
	•	•		will be collected after
		-	_	, O.M., available P and
	extractable K.		07 F 37 32	, , ,
PREVIOUS	Kharif 2016			
RESULTS				

Pre-sowing Soil Analysis

pHs	= 8.53
EC _e	$= 5.16 (dS m^{-1})$
SAR	$= 32.02 \text{ (mmol L}^{-1})^{1/2}$
O.M	= 0.45%
Available P	$= 8.53 \text{ mg kg}^{-1}$
Extractable K	$= 110.0 \text{ mg kg}^{-1}$

Effect of different fertilizer application rates on paddy yield and 1000 paddy weight of direct seeded fine rice

TreatmentsNPK	Paddy yield	1000 paddy weight
(kg ha^{-1})	$(t. ha^{-1})$	(g)
T ₁ (0-0-0)	1.27 I	16.50 G
T ₂ (0-86-60)	1.89 GH	17.20 G
T ₃ (75-86-60)	2.28 EF	21.40 E
T ₄ (150-86-60)	2.87 BC	24.10 C
T ₅ (225-86-60)	3.10 A	28.10 A
T ₆ (150-0-60)	1.72 H	16.90 G
T ₇ (150-43-60)	2.06 FG	19.35 F

T ₈ (150-129-60)	2.98 AB	26.40 B
T ₉ (150-86-0)	2.42 DE	22.80 D
T ₁₀ (150-86-30)	2.66 CD	23.50 CD
T ₁₁ (150-86-90)	2.89 BC	25.60 B
LSD	0.3210	0.9723

Effect of different rates of fertilizer application on NPK contents of paddy in direct seeded
fine rice

TreatmentsNPK (kg ha ⁻¹)	Total (N %)	Total (P %)	Total (K %)
T ₁ (0-0-0)	1.32 E	0.14 G	0.20 I
T ₂ (0-86-60)	1.74 D	0.18 EF	0.26 GH
T ₃ (75-86-60)	1.98 C	0.22 CD	0.31 F
T ₄ (150-86-60)	2.20 AB	0.27 AB	0.39 CD
T ₅ (225-86-60)	2.26 A	0.29 A	0.49 A
T ₆ (150-0-60)	1.68 D	0.16 FG	0.24 HI
T ₇ (150-43-60)	1.91 C	0.20 DE	0.29 FG
T ₈ (150-129-60)	2.24 A	0.27 AB	0.46 AB
T ₉ (150-86-0)	2.06 BC	0.23 CD	0.33 EF
T ₁₀ (150-86-30)	2.18 AB	0.25 BC	0.36 DE
T ₁₁ (150-86-90)	2.24 A	0.27 AB	0.42 BC
LSD	0.1634	0.0377	0.0468

Post-Harvest Soil Analysis

Treatments NPK (kg ha ⁻¹)	pHs	EC dS m ⁻¹	$\frac{\mathbf{SAR}}{(\mathrm{mmol}^{-1})^{1/2}}$	O.M. %	Available P mg kg ⁻¹	Extractable K mg kg ⁻¹
T ₁ (0-0-0)	8.53	5.14	31.03	0.42	7.60	106.0
T ₂ (0-86-60)	8.53	5.14	30.56	0.46	8.60	118.0
T ₃ (75-86-60)	8.52	5.13	30.24	0.48	8.80	118.0
T ₄ (150-86-60)	8.52	5.12	29.97	0.51	8.80	116.0
T ₅ (225-86-60)	8.52	5.12	29.67	0.53	8.92	116.0
T ₆ (150-0-60)	8.52	5.10	29.51	0.44	7.20	120.0
T ₇ (150-43-60)	8.52	5.09	29.42	0.47	8.40	118.0
T ₈ (150-129-60)	8.52	5.02	28.93	0.58	9.60	114.0
T ₉ (150-86-0)	8.51	5.01	28.68	0.52	9.20	102.0
T ₁₀ (150-86-30)	8.51	5.00	28.57	0.54	9.00	116.0
T ₁₁ (150-86-90)	8.51	4.99	28.42	0.56	9.00	118.0

TITLE 07:	EFFECT OF SEED PRIMING AND FOLIAR APPLICATION OF
	SALICYLIC ACID ON NUTRIENT UPTAKE OF DIRECT
	SEEDED RICE IN SALINE SODIC SOIL
OBJECTIVE	To study the effect of seed priming and foliar application of salicylic acid
	on nutrient uptake of direct seeded rice in saline sodic condition.
DURATION	2016-2018

RESEARCHERS	Dr. M. Sarfraz
LOCATION	Agri. Research Farm, SSRI, Pindi Bhattian
NATURE OF	Field Experiment
EXPERIMENT	
TREATMENTS	T ₁ Control (without Salicylic acid application)
	T_2 Seed priming of rice with 0.5 mM Salicylic acid
	T ₃ Seed priming of rice with 1.0 mM Salicylic acid
	T ₄ Seed priming of rice with 2.0 mM Salicylic acid
	T ₅ Seed priming and foliar application of rice with 0.5 mM salicylic acid
	T ₆ Seed priming and foliar application of rice with 1.0 mM salicylic acid
	T ₇ Seed priming and foliar application of rice with 2.0 mM salicylic acid
METHODOLOGY	Saline sodic field will be selected, prepared and leveled. Composite soil samples will be collected and analyzed for salinity/sodicity. Experiment will be laid out in RCBD with three replications having plot size $6 \times 4 \text{ m}^2$. Different treatments of salicylic acid will be applied according to treatment plan. For seed priming 500 g seed of rice will be soaked in 1000
	mL solution of salicylic acid of different concentration for 12 hours. Seed will be dried to its original moisture level under shade before sowing. Three foliar applications of salicylic acid will be done starting from booting stage with 10 days interval. Sowing of direct seeded rice will be done with hand drill in wattar condition. Test variety will be Shaheen
	Basmati. Seed rate will be 50 kg ha ⁻¹ . Recommended dose of NPK will be 150-86-60 N, P ₂ O ₅ and K ₂ O. Whole P ₂ O ₅ ,K ₂ O and 1/3 N will be applied at the time of sowing to rice crop. Remaining N will be applied 20 and 40 days after sowing. Zinc sulphate (33%) @ 12.5 kg ha ⁻¹ will be applied 15
	days after sowing. Crop will be harvested at maturity. Paddy and Straw yield data will be recorded. Paddy and straw samples will be analyzed for NPK concentration and their uptake. Soil samples will be collected after
	harvesting of rice and analysed for ECe, pHs, SAR, O.M., available P
	and extractable K.
PREVIOUS	Kharif 2016
RESULTS	

Pre-sowing Soil Analysis

0	•
pHs	= 8.53
EC _e	$= 5.20 (dS m^{-1})$
SAR	$= 31.40 \text{ (mmol } \text{L}^{-1})^{1/2}$
O.M	= 0.44%
Available P	$= 7.53 \text{ mg kg}^{-1}$
Extractable K	$= 102.0 \text{ mg kg}^{-1}$

Treatments	Paddy yield (t. ha- ¹)	Straw yield (t. ha- ¹)	1000 paddy wt (g)
T ₁ Control (without SA application)	2.85 D	2.97 E	23.10 D
T_2 Seed priming of wheat with 0.5 mM SA	2.91 CD	3.04 E	23.14 D
T_3 Seed priming of wheat with 1.0 mM SA	3.08 BC	3.18 DE	23.72 CD
T_4 Seed priming of wheat with 2.0 mM SA	3.18 B	3.35 CD	24.10 C
T ₅ Seed priming and foliar application of wheat with 0.5 mM SA	3.20 B	3.51 BC	25.60 B
T ₆ Seed priming and foliar application of wheat with 1.0 mM SA	3.42 A	3.72 AB	27.10 A
T ₇ Seed priming and foliar application of wheat with 2.0 mM SA	3.46 A	3.78 A	27.16 A
LSD	0.2238	0.2341	0.7130

Effect of different treatments of salicylic acid on paddy yield, straw yield and 1000 paddy weight of rice

Effect of different treatments of Salicylic Acid on NPK contents of Paddy

Treatments	Total (N %)	Total (P %)	Total (K %)
$T_1 = Control (without Salicylic Acid)$	2.05 D	0.22 B	0.36 C
T_2 = Seed priming of rice with 0.5mM Salicylic Acid	2.07 CD	0.22 B	0.36 C
T ₃ =seed priming of rice with 1mM Salicylic Acid	2.10 CD	0.24 AB	0.36 C
T ₄ =seed priming of Rice with 2mM Salicylic Acid	2.14 BC	0.24 AB	0.38 BC
T ₅ =seed priming +Foliar application of rice with o.5mM Salicylic Acid	2.18 BC	0.26 AB	0.38 BC
T ₆ =seed priming+ Foliar application of rice with 1mM Salicylic Acid	2.26 A	0.28 A	0.42 AB
T ₇ =seed priming+ Foliar application of rice with 2mM Salicylic Acid	2.28 A	0.28 A	0.44 A
LSD	0.0747	0.0482	0.0482
Effect of different treatments of Salicylic Acid on N	PK contents of	f rice straw	
Treatments	Total (N %)	Total (P %)	Total (K %)
$T_1 = Control (without Salicylic Acid)$	0.47 C	0.08 B	1.16 C
T_2 = Seed priming of rice with 0.5mM Salicylic Acid	0.48 C	0.08 B	1.16 C
T ₃ =seed priming of rice with 1mM Salicylic Acid	0.52 BC	0.10 AB	1.18 BC
T ₄ =seed priming of Rice with 2mM Salicylic Acid	0.56 AB	0.10 AB	1.18 BC
T ₅ =seed priming +Foliar application of rice with o.5mM Salicylic Acid	0.58 A	0.10 AB	1.19 ABC
T_6 =seed priming+ Foliar application of rice with 1mM Salicylic Acid	0.61 A	0.12 A	1.21 AB
T ₇ =seed priming+ Foliar application of rice with 2mM Salicylic Acid	0.61 A	0.12 A	1.22 A
LSD	0.0654	0.0368	0.0375

Post-Harvest	Soil A	nalysis
---------------------	--------	---------

Treatments NPK (kg ha ⁻¹)	pHs	EC _e dS m ⁻¹	$\frac{\mathbf{SAR}}{(\mathrm{mmol}^{-1})^{1/2}}$	0.M %	Available P mg kg ⁻¹	Extractable K mg kg ⁻¹
T ₁ Control (without Salicylic acid application)	8.53	5.15	30.92	0.52	8.80	108.60
T_2 Seed priming of wheat with 0.5 mM SA	8.53	5.14	30.78	0.54	8.80	108.40
T_3 Seed priming of wheat with 1.0 mM SA	8.52	5.13	30.76	0.54	8.68	108.10
T ₄ Seed priming of wheat with 2.0 mM SA	8.52	5.12	30.63	0.54	8.64	107.60
T ₅ Seed priming and foliar application of wheat with 0.5 mM SA	8.52	5.12	30.60	0.54	8.60	107.20
T ₆ Seed priming and foliar application of wheat with 1.0 mM SA	8.52	5.11	30.50	0.56	8.58	105.10
T ₇ Seed priming and foliar application of wheat with 2.0 mM SA	8.51	5.11	30.48	0.56	8.58	104.70

TITLE 08:	ENHANCING THE SOLUBILITY OF GYPSUM WITH H ₂ SO ₄		
OBJECTIVE	To find out the best combination of sulfuric acid and gypsum for		
	reclamation of saline sodic soil in rice wheat cropping rotation		
RESEARCHERS	Amar IqbalSaqib and Dr. Khalil Ahmed		
DURATION	2015-2018		
LOCATION	Agri. Research Farm, SSRI, PindiBhattian		
NATURE OF	Field Experiment		
EXPERIMENT			
TREATMENTS	T ₁ Control		
	T ₂ Gypsum @ 100 % of GR		
	T_3 Gypsum @ 100 % of GR + 10 kg H ₂ SO ₄ acre ⁻¹		
	T_4 Gypsum @ 100 % of GR + 50 kg H_2SO_4 acre ⁻¹		
	T_5 Gypsum @ 100 % of GR + 100 kg H ₂ SO ₄ acre ⁻¹		
METHODOLOGY	A salt affected field will be selected, prepared and leveled. Composite		
	soil samples will be collected and analyzed for salinity/sodicity and GR.		
	Experiment will be laid out in RCBD with three replications having plot		
	size $6 \times 4 \text{ m}^2$. Gypsum and sulfuric acid will be applied in the respective		
	treatment plots followed by leaching. Crop rotation used will be rice-		
	wheat. Recommended dose of fertilizers 150-85-60 N,P ₂ O ₅ ,K ₂ O kg ha ⁻¹		
	for rice (Shaheen Basmati) will be applied. Soil samples will be collected		
	after harvesting of each crop. Straw and paddy yield data will be		
	recorded at maturity. Soil samples will be analyzed for pH_s , EC_e and SAR.		
DDEVIOUS	2016		
PREVIOUS DESLUTE	2010		
RESULTS			

pHs	= 8.85
$EC_e(dS m^{-1})$	=4.85
SAR $(mmol L^{-1})^{1/2}$	= 43.82
GR (t.acre ⁻¹)	= 3.96

Yield data (Rice2016)

Treatments	Paddy yield	Straw Yield
		$(t. ha^{-1})$
T ₁ Control	1.42C	3.29C
T ₂ Gypsum @ 100 % of GR	2.79B	6.45B
T_3 Gypsum @ 100 % of GR + 10 kg H ₂ SO ₄ acre ⁻¹	2.82B	6.43B
T_4 Gypsum @ 100% of GR + 50 kg H ₂ SO ₄ acre ⁻¹	3.39A	7.69A
T_5 Gypsum @ 100% of GR + 100 kg H ₂ SO ₄ acre ⁻¹	3.46A	7.87A
LSD	0.3483	0.7968

SOIL ANALYSIS BEFORE RICE 2016

Treatments	pHs	$\frac{\mathbf{EC_e}}{\mathrm{dS m}^{-1}}$	$\frac{\mathbf{SAR}}{(\mathbf{mmol}^{-1})^{1/2}}$
Control	8.83	4.87	43.44
Gypsum @ 100% GR	8.71	4.50	34.00
T ₃ - Gypsum @ 100 % of GR +	8.72	4.48	33.55
T_4 - Gypsum @ 100% of GR + 50 kgH ₂ SO ₄	8.68	4.39	30.33
T ₅ - Gypsum @ 100% of $GR + 100 \text{ kgH}_2SO_4$	8.67	4.46	30.53

SOIL ANALYSIS AFTER RICE HARVEST 2016

Treatments	рН _s	EC _e (dS m ⁻¹)	SAR (mmol L ⁻¹) ^{1/2}
T ₁ Control	8.85	4.90	43.69
T ₂ Gypsum @ 100 % of GR	8.65	3.87	24.55
T_3 Gypsum @ 100 % of GR + 10 kgH ₂ SO ₄ acre ⁻¹	8.65	3.88	24.41
T_4 Gypsum @ 100% of GR + 50 kgH ₂ SO ₄ acre ⁻¹	8.56	3.58	21.43
T_5 Gypsum @ 100% of GR + 100 kgH ₂ SO ₄ acre ⁻¹	8.53	3.61	20.55

TITLE 09:	USE OF HYACINTH COMPOST IN SALT AFFECTED SOILS	
OBJECTIVE	To determine the effectiveness of hyacinth compost as an ameliorant for	
	reclamation of saline sodic soil and crop production	
RESEARCHERS	A.R. Jami, Amar IqbalSaqib, Dr. Khalil Ahmed and Dr. Ehsan-ul-Haq	
DURATION	2015-2018	
LOCATION	Agri. Research Farm, SSRI, PindiBhattian	
NATURE OF	Field Experiment	
EXPERIMENT		
TREATMENTS	T ₁ Control	
	T ₂ Gypsum @ 100% of GR	
	T ₃ Gypsum @ 50 % of GR	
	T_4 Hyacinth compost @ 15t. ha ⁻¹	
	T_5 Gypsum @ 50 % of GR+ hyacinth compost @ 5 t. ha ⁻¹	
	T_6 Gypsum @ 50 % of GR+ hyacinth compost @ 10 t. ha ⁻¹	
	T ₇ Gypsum @ 50 % of GR+ hyacinth compost @ 15 t. ha ⁻¹	
METHODOLOGY	A salt affected field will be selected, prepared and leveled. Composite soil	

	samples will be collected and analyzed for salinity/sodicity and GR.		
	Experiment will be laid out in RCBD with three replications having plot		
	size 6 x 4 m^2 . Gypsum will be applied one month before rice		
	transplantation in the respective treatment plots followed by leaching and		
	hyacinth compost fifteen days before transplantation. Crop rotation used		
	will be rice–wheat. Compost will be made by burying the water hyacinth		
	plants in a pit up to four weeks. Recommended dose of fertilizers 150-85-		
	60 N,P ₂ O ₅ ,K ₂ O kg ha ⁻¹ for rice (Shaheen Basmati) will be applied. Soil		
	samples will be collected after harvesting of each crop. Straw and paddy		
	yield data will be recorded at maturity. Soil samples will be analyzed for		
	pH_s , EC_e and SAR.		
PREVIOUS	2016		
RESULTS			

pH _s	= 8.91	
EC _e ($dS m^{-1}$)	= 5.02
SAR	$(\text{mmol } L^{-1})^{1/2}$	= 44.24
	· /	
GR	$(t.acre^{-1})$	= 4.12
BD	$(Mg m^{-3}) = 1.43$	
HC	$(\text{cm hr}^{-1}) = 0.28$	

Yield data (Rice2016)

Treatments		Straw
Treatments	t	ha ⁻¹
T ₁ Control	1.24D	3.10D
T ₂ Gypsum @ 100% of GR	2.92A	6.72A
T ₃ Gypsum @ 50 % of GR	2.32C	5.34C
T_4 Hyacinth compost @ 15 t. ha ⁻¹	2.35C	5.55C
T ₅ Gypsum @ 50 % of GR + hyacinth compost @ 5 t. ha ⁻¹	2.54BC	5.93BC
T_6 Gypsum @ 50 % of GR + hyacinth compost @ 10 t. ha ⁻¹	2.80AB	6.50AB
T_7 Gypsum @ 50 % of GR + hyacinth compost @ 15 t. ha ⁻¹	3.03A	6.97A
LSD	0.2824	0.6613

Soil analysis before rice 2016

Treatments	рН _s	EC _e	SAR	BD	HC
		$(\mathbf{dS}\mathbf{m})$	$($ mmol L ⁻ $_{1,1/2}$	$(Mg m^{-3})$	$(\operatorname{cm}\operatorname{hr}^{-1})$
Control	8.93	4.98	44.24	1.66	0.34
Gypsum @ 100% GR	8.72	4.69	32.12	1.62	0.46
T ₃ - Gypsum @ 50 % of GR	8.82	4.77	35.42	1.63	0.39
T_4 -Hyacinth compost @ 15 t. ha ⁻¹	8.86	4.82	36.54	1.60	0.40
T ₅ - Gypsum @ 50 % of GR +	8.78	4.76	35.06	1.61	0.43
T ₆ - Gypsum @ 50 % of GR +	8.79	4.70	34.28	1.59	0.44
T ₇ - Gypsum @ 50 % of GR +	8.74	4.67	33.78	1.59	0.45

Soil analysis after rice 2016

Treatments	pHs	ECe	SAR	BD	HC
	-	$(dS m^{-1})$	$(\text{mmol } L^{-1})^{1/2}$	$(Mg m^{-3})$	$(cm hr^{-1})$
T ₁ Control	8.93	5.02	44.29	1.66	0.34
T ₂ Gypsum @ 100% of GR	8.63	3.68	25.66	1.60	0.47
T ₃ Gypsum @ 50 % of GR	8.74	3.80	31.51	1.62	0.42

T_4 Hyacinth compost @ 15 t. ha ⁻¹	8.77	4.06	32.27	1.60	0.40
T_5 Gypsum @ 50 % of GR + hyacinth compost @ 5 t. ha ⁻¹	8.71	3.76	28.53	1.60	0.43
T_6 Gypsum @ 50 % of GR + hyacinth compost @ 10 t. ha ⁻¹	8.67	3.65	26.71	1.59	0.45
T_7 Gypsum @ 50 % of GR + hyacinth compost @ 15 t. ha ⁻¹	8.62	3.53	25.37	1.59	0.48

TITLE 10:	REHABILITATION OF SALINE SODIC SOILS THROUGH
	CULTIVATION OF SALT TOLERANT GRASSES
OBJECTIVE	To investigate the performance of various perennial salt tolerant grasses
	under salt affected soils conditions and their impact in improving soil
	health
RESEARCHER	Amar IqbalSaqib
DURATION	2017-2020
LOCATION	Agri. Research Farm, SSRI, Pindi Bhattian
NATURE OF	Field Experiment
EXPERIMENT	
TREATMENTS	$T_1 = Para Grass$
	$T_2 = Mot Grass$
	$T_3 =$ Rhodes Grass
	$T_4 = Kallar Grass$
METHODOLOGY	A salt affected field will be selected, prepared and leveled. Composite
	soil samples will be collected and analyzed for salinity/sodicity and GR.
	Experiment will be laid out in RCBD with three replications. Tufts of
	grasses will be planted in February-March according to treatment
	plane.Fertilizer P ₂ O ₅ and K ₂ O will be applied @ 40 kg ha ⁻¹ at final land
	preparation while N will be applied @ 30 kg ha ⁻¹ at 20 days after
	transplanting whereas15 kg N ha ⁻¹ will be applied after every harvest
	(three months). Fresh and dry weight, NO. of cuttings, will be recorded
	after three months. Soil samples will be analyzed for pH _s , EC _e , and SAR
	after every year.
PREVIOUS YEAR	Field has been selected and prepared ,collection of grasses is in progress
RESULTS	

TITLE 11:	RESPONSE OF	TAMARIND	SEEDLINGS UNDER				
	DIFFERENT LEVELS OF SALINITY AND SODICITY						
OBJECTIVE	Performance of tamar	Performance of tamarind seedlings will be tested on different salinity					
	and sodicity levels in	n pots and then pe	rformance will be evaluated				
	under field conditions						
RESEARCHER	Amar IqbalSaqib and	Abdul Rehman Jam	i				
DURATION	2017-2020						
LOCATION	Campus, SSRI, Pindi	Bhattian					
NATURE OF	Pot Experiment						
EXPERIMENT							
TREATMENTS	Treatments	$EC_e(dSm^{-1})$	SAR (mmol L ⁻¹) ^{1/2}				
	T_1	<4	<13				
	T ₂ 6 25						
	T ₃ 6 35						
	T_4 6 45						
	T_5	8	25				

	T_6	8	35			
	T_7	8	45			
	T_8	10	25			
	T 9	10	35			
	T_{10}	10	45			
METHODOLOGY	A normal soil will be	selected and the desi	red salinity/sodicity levels			
	will be developed usin	ng salts NaCl, Na ₂ SO ₄	, CaCl ₂ and MgSO ₄ . After			
	establishing, desired levels of EC_e and SAR, the soil will be filled in					
	the glazed pots as per treatment plan. One seedling of tamarind will be					
	transplanted (February-March) in each pot. Experiment will be laid out					
	in CRD with three replications. After one year (April-May) data					
	regarding plant height, stem diameter, No. of leaves, No. of branches					
	and mortality % will b	be recorded and leave	s will be analyzed for Ca,			
	Mg, Na and K. Soil sa	mples will be analyzed	d for pH _s , EC _e , SAR at the			
	start and completion of the study.					
PREVIOUS	Salinity has been deve	loped according to tre	atments in pots and plants			
RESULTS	will be transplanted in	this month.	- -			

TITLE 12:	RESPONSE OF MAIZE-WHEAT ROTATION UNDER						
	BRACKISH WATER MANAGEMENT STRATEGIES						
OBJECTIVE	To assess the effect of brackish tube well water for getting high yield						
	under maize-wheat rotation in normal soils						
RESEARCHER	Dr. Khalil Ahmed and Dr. Muhammad Anwar Zaka						
DURATION	2015-2019						
LOCATION	Research Farm, SSRI, Pindi Bhattian						
NATURE OF	Field Experiment						
EXPERIMENT							
TREATMENTS	T ₁ Canal water						
	T ₂ Tube well water						
	T ₃ Gypsum application on the basis of RSC of tube well water						
	T_4 Tube well water + PGPR						
	T ₅ Tube well water + Gypsum application on the basis of						
	RSC of tube well water + PGPR						
METHODOLOGY	After the harvest of wheat crop, post-harvest soil sampling will be done						
	and maize crop will be sown on a normal field while gypsum on RSC						
	basis will be applied on annual basis. PGPR will be coated to maize seed						
	for 3-4 hours before sowing. Fertilizers @ 125-90-60 NPK kg ha ⁻¹ will be						
	applied to all treatments. Grain yield will be recorded at maturity. Soil						
	samples will be collected and analyzed for pH _s , EC _e , SAR, BD and HC						
	before the start of the experiment and after harvest of each crop. The						
	design will be RCB with three repeats.						
PREVIOUS	2016						
RESULTS							

pHs	= 8.04
ECe	$= 2.81 \text{ dS m}^{-1}$
SAR	$= 11.99 \text{ (mmol } \text{L}^{-1})^{1/2}$
Hydraulic conductivity	$= 0.87 \text{ cm hr}^{-1}$
Bulk density	= 1.40 Mg m ⁻³
Analysis of tube well water	
EC _{iw}	$= 1.37 \text{ dS m}^{-1}$
SAR _{iw}	$= 8.40 \text{ (mmol L}^{-1})^{1/2}$
RSC _{iw}	$= 7.85 \text{ me } \text{L}^{-1}$

Previous results maize (2016)

Treatments	Plant height	Grain yield
	(cm)	$(t. ha^{-1})$
T ₁ Canal water	194.00 A	2.20 A
T_2 Tube well water	182.00 B	2.00 B
T_{3} Gypsum application on the basis of RSC of tube well water	187.33 AB	2.19 A
T_4 Tube well water + PGPR	185.00 B	2.04 B
T_5 Tube well water + PGPR + Gypsum application	189.00 AB	2.22 A
on the basis of RSC of tube well water		
LSD	8.7033	0.1381

Soil analyses before sowing of maize 2016

Treatments	рН _s	$\frac{\mathbf{EC}_{\mathbf{e}}}{(\mathrm{dS \ m}^{-1})}$	$\frac{\mathbf{SAR}}{(\mathrm{mmol}\ \mathrm{L}^{-1})}^{1/2}$	$\frac{\mathbf{HC}}{(\mathrm{cm \ hr}^{-1})}$	BD (Mg m ⁻³)
T_1 Canal water	8.02	1.07	10.04	0.89	1.34
T_2 Tube well water	8.28	1.69	13.45	0.87	1.42
T_3 Gypsum application on the basis of RSC of tube well water	8.07	1.41	10.13	0.90	1.38
T_4 Tube well water + PGPR	8.15	1.59	11.16	0.88	1.35
T_5 Tube well water + PGPR + Gypsum application on the basis of RSC of tube well water	8.07	1.26	10.21	0.90	1.36

Soil analyses after maize harvest 2016

Treatments	рН _s	$\frac{\mathbf{EC}_{\mathbf{e}}}{(\mathrm{dS}\ \mathrm{m}^{-1})}$	$\frac{\mathbf{SAR}}{(\mathrm{mmol}\ \mathrm{L}^{-1})}^{1/2}$	$\frac{\mathbf{HC}}{(\mathrm{cm \ hr}^{-1})}$	BD (Mg m ⁻³)
T ₁ Canal water	8.02	1.06	10.00	0.90	1.34
T_2 Tube well water	8.30	1.72	13.47	0.85	1.42
T ₃ Gypsum application on the basis of RSC of tube well water	8.02	1.39	10.00	0.91	1.36
T_4 Tube well water + PGPR	8.10	1.58	11.15	0.86	1.37
T ₅ Tube well water + PGPR + Gypsum application on the basis of RSC of tube well water	8.00	1.25	10.18	0.91	1.35

TITLE 13:	LONG TERM EFFECT OF HIGH RSC WATER ON PHYSICAL
11111/13;	PROPERTIES OF SOIL UNDER RICE-MUSTARD ROTATION
OBJECTIVE	To study the deleterious effects of high RSC water on physical properties
	of soil under rice-mustard rotation
DURATION	2013-18
RESEARCHER	Dr. Khalil Ahmed and Dr. Muhammad Anwar Zaka
LOCATION	Research Farm, SSRI, Pindi Bhattian
NATURE OF	Field Experiment
EXPERIMENT	
TREATMENTS	T ₁ Tube well water
	T ₂ Gypsum application on the basis of RSC of tube well water
	$T_3H_2SO_4$ application on the basis of RSC of tube well water
	T ₄ Green Manuring with Guar
	T_5 FYM @ 10 t ha ⁻¹
METHODOLOGY	A moderately salt affected field will be selected, prepared and leveled.
	Composite soil samples will be collected and analyzed for pH _s , EC _e and
	SAR. Experiment will be laid out in RCBD with four replications.
	Gypsum will be applied in the respective treatment plots followed by
	leaching. Crop rotation used will be rice–mustard. Recommended dose of
	fertilizers @ 150-85-60 NPK kg ha ⁻¹ will be applied to rice crop. Yield
	data of will be recorded at maturity. Soil samples will be collected after
	harvesting of each crop. These samples will be analyzed for ECe, pHs,
	SAR, HC and BD.
PREVIOUS	2016
RESULTS	
Initial Soil Analysis	
pHs	= 8.82
EC _e	$= 4.71 \text{ dS m}^{-1}$
SAR	$= 26.82 \text{ (mmol } \text{L}^{-1})^{1/2}$
Hydraulic conductivit	$y = 0.67 \text{ cm hr}^{-1}$
Bulk density	$= 1.37 \text{ Mg m}^{-3}$
Analysis of tube well	
EC _{iw}	1.37 dS m ⁻¹
SAR	8.40 (mmol L^{-1}) ^{1/2}
RSC _{iw}	$7.85 \text{ me } \text{L}^{-1}$
Yield data of Rice (2	016)

Tielu uala of Kice (2010)		
Treatments	Paddy Yield	Straw Yield
	(t. ha ⁻¹)	(t. ha ⁻¹)
T ₁ Tube well water	2.81 C	4.10 C
T ₂ Gypsum application on the basis of RSC of tube well water	3.53 A	7.51 A
$T_{3}H_{2}SO_{4}$ application on the basis of RSC of tube well water	3.50 A	7.53 A
T_4 Green Manuring with Guar	3.17 B	6.83 B
$T_{5}FYM @ 10 t. ha^{-1}$	3.30 B	7.00 AB
LSD	0.1778	0.5532

Soil analysis before rice 2016

Treatments	pHs	EC _e	SAR	HC	BD
		$(dS m^{-1})$	$(\text{mmol } L^{-1})^{1/2}$	$(\operatorname{cm}\operatorname{hr}^{-1})$	$(Mg m^{-3})$
T ₁ Tube well water	8.79	4.57	25.00	0.68	1.34
T_2 Gypsum application on the	8.61	3.90	17.00	0.74	1.29
basis of RSC of tube well water					
$T_{3} H_{2} SO_{4}$ application on the basis	8.62	3.92	17.10	0.72	1.29
of RSC of tube well water					
T ₄ Green Manuring with Guar	8.73	4.00	19.32	0.70	1.30
T_{5}^{-1} FYM @ 10 t. ha	8.73	3.94	18.15	0.70	1.30

Soil analysis after rice harvest 2016

Treatments	pHs	EC _e	SAR	HC	BD
		$(dS m^{-1})$	$(\text{mmol } L^{-1})^{1/2}$	$(\operatorname{cm}\operatorname{hr}^{-1})$	$(Mg m^{-3})$
T ₁ Tube well water	8.80	4.59	25.10	0.67	1.35
T ₂ Gypsum application on the	8.60	3.50	17.00	0.75	1.27
basis of RSC of tube well					
water					
$T_3 H_2 SO_4$ application on the basis	8.60	3.90	17.70	0.72	1.28
of RSC of tube well water					
T ₄ Green Manuring with Guar	8.70	3.93	19.16	0.71	1.29
T_{5} FYM @ 10 t. ha ⁻¹	8.73	4.00	18.10	0.70	1.28

TITLE 14:	INTEGRATED USE OF SULPHUR AND ORGANIC		
	AMENDMENT FOR RECLAMATION OF SALINE SODIC SOIL		
	IN WHEAT-PEARL MILLET ROTATION		
OBJECTIVE	To monitor the effectiveness of combined use of sulphur and organic		
	source for reclamation of saline sodic soil under wheat-pearl millet		
	rotation.		
RESEARCHER	Dr. Khalil Ahmed and Dr. Muhammad Anwar Zaka		
DURATION	2016-2019		
LOCATION	Research Farm, SSRI Pindi Bhattian		
NATURE OF	Field Experiment		
EXPERIMENT			
TREATMENTS	1. Control		
	2. Sulphur on the basis of 50% GR		
	3. Sulphur on the basis of 100% GR		
	4. Press mud @ 20 t ha^{-1}		
	5. Sulphur on the basis of 50% GR + Press mud @ 10 t ha^{-1}		
	6. Sulphur on the basis of 25% GR + Press mud @ 15 t ha^{-1}		
METHODOLOGY	After the harvest of wheat crop, post-harvest soil sampling will be done		
	and pearl millet crop will be sown in same layout. The design will be RCB		

	with three repeats. Fertilizers @ 80-60-60 NPK kg ha ⁻¹ will be applied and all other agronomic practices will be followed uniformly to all the treatments. Grain yield will be recorded at maturity. Soil samples will be collected and analyzed for pH_s , EC _e , SAR, BD and HC before the start of
	the experiment and after harvest of the crop.
PREVIOUS RESULTS	First Year

pHs	= 8.97
EC _e	$= 4.52 \text{ dS m}^{-1}$
SAR	$= 40.70 \ (\text{mmol } \text{L}^{-1})^{1/2}$
Hydraulic conductivity	$= 0.54 \text{ cm hr}^{-1}$
Bulk density	$= 1.38 \text{ Mg m}^{-3}$
GR	= 2.50 (t. acre-1)

TITLE 15:	LONG TERM EFFECT OF DIFFERENT ORGANIC MANURES
	AND GYPSUM ON PHYSICAL PROPERTIES OF SALINE SODIC
	SOIL IN WHEAT-RICE ROTATION
OBJECTIVE	To monitor the effectiveness of different amendments on downward
	movement of salts and rehabilitation of soil health with passage of time
RESEARCHER	Dr. Khalil Ahmed and Dr. Muhammad Anwar Zaka
DURATION	2016-2025
LOCATION	Research Farm, SSRI Pindi Bhattian
NATURE OF	Field
EXPERIMENT	
TREATMENTS	 Control Gypsum @ 100% GR
	3. Poultry manure @ 20 t. ha^{-1}
	4. FYM @ 20 t. ha^{-1}
	5. Rice straw @ 20 t. ha^{-1}
	6. Press mud @ 20 t. ha^{-1}
METHODOLOGY	After the harvest of wheat crop, post-harvest soil sampling will be done
	and rice crop will be sown in same layout. The design will be RCB with
	three repeats. Fertilizers @ 125-90-60 NPK kg ha ⁻¹ will be applied and all
	other agronomic practices will be followed uniformly to all the
	treatments. Grain yield will be recorded at maturity. Soil samples will be
	collected and analyzed for pH _s , EC _e , SAR, BD and HC before the start of
	the experiment and after harvest of the crop. Composite soil samples will
	be collected from 0-15, 15-30, 30-60 and 60-90 cm after every three years
	and analyzed for ECe, pHs, SAR, HC and BD.
PREVIOUS	First Year
RESULTS	

Initial Soil Analysis	
pH _s	= 9.91
ECe	$= 10.95 \text{ dS m}^{-1}$
SAR	$= 89.14 \text{ (mmol L}^{-1})^{1/2}$
Hydraulic conductivity	$= 0.16 \text{ cm hr}^{-1}$
Bulk density	$= 1.69 \text{ Mg m}^{-3}$
GR (t. acre)	= 4.40

TITLE 16:	STRATEGIES FOR UTILIZATION OF BRACKISH WATER FOR STRAWBERRY-MUNG ROTATION			
OBJECTIVE	To manage the deleterious effects of brackish water (BW) for sustainable			
	production of strawberry (Fragariaananassa) and Mung Bean			
	(Vignaradiata) rotation.			
RESEARCHERS	GhulamQadir, Imtiaz Ahmad Warraich, Muhammad AslamAvais and M. A.			
	Zaka			
DURATION	2016-2019			
LOCATION	SSRI campus, Pindi Bhattian			
NATURE OF	Field experiment			
EXPERIMENT				
TREATMENTS	T ₁ : Control [Brackish Water (B W)]			
	T_2 : Poultry manure @ 5 t. ha ⁻¹			
	T_3 : Poultry manure @ 10 t. ha ⁻¹			
	T_4 : H_2SO_4 equivalent to 25% GR on the basis of RSC of water			
	T ₅ : H_2SO_4 equivalent to 50% GR on the basis of RSC of water			
METHODOLGY	A normal field was selected and poultry manure was applied before			
	transplantation of strawberry. H ₂ SO ₄ will be applied with each irrigation.			
	Mung Bean (Vigna radiata) yield and yield parameters (Grain Yield,			
	Biomass, No. of Pods, No. of branches etc.) will be recorded. Soil samples			
	will be analyzed for pH_s , EC _e and SAR at the initiation of the experiment			
	and after harvest of the crop. The crop will be sown in lines during the			
	month of July-August. Fertilizer @ $25-60-30 \text{ N P}_2\text{O}_5\text{ K}_2\text{O} \text{ kg ha}^{-1}$ will be			
	applied, (Whole P K + $1/2$ N at sowing & remaining $\frac{1}{2}$ N at flowering			
	stage). Distance between plant to plant 15 cm and row to row 30 cm will be			
	maintained. Statistical design will be RCB. Irrigation will be applied 3 to 4			
	times, (1 st irrigation after 3 to 4 weeks after germination, 2 nd at flowering, 3 rd			
	at pod formation and then at grain formation).			
PREVIOUS	First Year			
RESULTS				

= 8.19 pHs $EC_{e} = 2.50 \text{ (dS m}^{-1})$ SAR = 19.89 (mmol L⁻¹)^{1/2}

Irrigation Water Analysis: EC_{iw} = 1.23 (dS m⁻¹) SAR = 6.01 (mmol L⁻¹)^{1/2} $RSC = 4.85 \text{ (me L}^{-1}\text{)}$

Poultry Manure Analysis (%)

Total N	Total P	Total K
1.59	1.0	0.53

TITLE 17:	DISSEMINATION OF TECHNOLOGIES FOR SAFE UTILIZATION
	OF BRACKISH WATER
OBJECTIVE	To assess quality of tube well water installed by farmers at Chiniot road
	Pindi Bhattian for its safe usage.
RESEARCHERS	GhulamQadir, Imtiaz Ahmad Warraich, Muhammad AslamAvais and M. A.
	Zaka
DURATION	2016-2025
LOCATION	Farmer Tube Well, Chiniot Road, Pindi Bhattian
NATURE OF	Field experiment
EXPERIMENT	
Methodology	Farmers tube wells Chiniot road Pindi Bhattian will be selected for
	determining quality of water with respect to EC _{iw} , SAR and RSC. Water
	samples of thirty eight tube wells will be collected and analyzed. The
	farmers will be advised to avoid ill effects of of brackish water.
PREVIOUS	2016-17
RESULTS	

Total No. of Water Samples = 38							
Fit = 8 (21.05%)							
Unfit = 21 (55.26%)							
Marginally Fit = $9(23.68\%)$							
Unfit Due To							
EC	RSC	EC + RSC					
4	4	13					
	Marginally Fit Due To	·					
EC	RSC	EC + RSC					
1	8	-					

Sr.	Name of Farmer	EC _{iw}	SAR	RSC	Quality
No.		dS m^{-1}	$(mmol L^{-1})$	me L^{-1}	
1	Muhammad Hussain, Macho Nikka	1.20	4.38	2.00	M. Fit
2	Muhammad Hussain, Macho Nikka	1.17	4.48	2.30	M. Fit
3	Malik Manzoor, JotianWala	2.01	10.12	4.10	unfit
4	Malik Manzoor, JotianWala	1.57	6.74	1.15	unfit
5	Malik Manzoor, JotianWala	1.92	9.46	3.90	unfit
6	Malik ManzoorHussain, JotianWala	1.73	7.92	2.65	unfit
7	Govt. Primary School, Ghabrika	1.19	8.81	3.80	unfit
8	Govt. Primary School, Ghabrika	2.44	13.22	3.90	unfit
9	RanaIrshad, Ghabrika	1.58	7.47	3.40	unfit
10	RanaFarooq, Ghabrika	0.78	1.47	1.35	M. Fit
11	RanaFarooq, Ghabrika	1.12	2.17	Nil	Fit
12	Farhat Abbas, JotianWala	1.60	7.19	2.75	unfit
13	RaiUlfatHussain, Ghabrika	1.89	8.36	1.90	unfit
4	RaiUlfatHussain, Ghabrika	0.78	2.91	2.35	M. Fit
15	RaiUlfatHussain, Ghabrika	1.91	9.51	2.10	unfit

16	RanaNaeem, Ghabrika	1.82	8.85	3.80	unfit
17	RanaNaeem, Ghabrika	1.56	7.60	2.55	unfit
18	RanaNaeem, Ghabrika	1.50	9.25	3.75	unfit
19	Muhammad Zafar, Ghabrika	1.29	5.99	2.60	unfit
20	AbrarMunir, MandalKhuh	1.40	4.17	1.25	M. Fit
21	Naseem Abbas, MandalKhuh	0.98	1.63	Nil	Fit
22	Jazman, KhanniKhui	1.01	5.96	3.00	unfit
23	RaiWaseem, ThathaLadai	0.75	2.37	0.60	Fit
24	Zafar Ali, ThathaLadaiMauzaBadari	0.53	0.92	Nil	Fit
25	Zafar Ali, ThathaLadaiMauzaBadari	1.05	2.55	0.40	Fit
26	Zafar Ali, ThathaLadaiMauzaBadari	1.00	3.16	1.50	M. Fit
27	Zafar Ali, ThathaLadaiMauzaBadari	1.08	3.51	1.30	
28	Zafar Ali, ThathaLadaiMauzaBadari	1.07	3.08	1.70	
29	ShahbazHussain, KotBadar Din	1.80	11.94	4.30	unfit
30	Muhammad Nawaz, KotBadar Din	1.68	9.70	1.70	unfit
31	Sarfraz, KotBadar Din	2.27	16.81	6.70	unfit
32	AftabHussain, Bhajne	2.25	14.47	5.10	unfit
33	Shabbeer, 12 Da Chakka	2.36	23.0	8.45	unfit
34	Majboor, Khan Chak 42	2.57	13.78	4.05	unfit
35	Muhammad Amjad, AddaBurjian	1.14	5.23	1.20	Fit
36	Haq Nawaz, Sahuke	0.69	3.62	1.95	M. Fit
37	MumtazHussain, Mirza Bhattian	0.83	2.45	0.80	Fit
38	NasirHussain, Mirza Bhattian	0.70	0.70	Nil	

TITLE 18:	EFFECTIVENESS OF DIFFERENT MANAGEMENT STRATEGIES
	FOR HIGH RSC IRRIGATION WATER
OBJECTIVE	To manage the deleterious effects of brackish water (BW) for sustainable
	production of wheat-rice in a normal soil
RESEARCHER	GhulamQadir, Imtiaz Ahmad Warraich, Muhammad AslamAvais and M. A.
S	Zaka
DURATION	2015-2019
LOCATION	Rakh Farm, SSRI, PindiBhattian
NATURE OF	Field experiment
EXPERIMENT	
TREATMENTS	T ₁ : Control [Brackish Water (B W)]
	T ₂ : Continuous treated water with sulfuric acid on the basis of RSC of water
	T ₃ : Two irrigations with H ₂ SO ₄ on RSC basis +Two Irrigations without H ₂ SO ₄
	T_4 : Alternate irrigations with H_2SO_4 on RSC basis
	T ₅ : One irrigation with H ₂ SO ₄ on RSC basis after two irrigations without
	H_2SO_4
METHODOLGY	A normal field will be selected and commercial H ₂ SO ₄ on RSC basis will be
	applied as per treatment plan. Rice nursery (Shaheen Basmati) will be
	transplanted. Fertilizer @ 150-85-60 NPK kg ha ⁻¹ will be applied to all
	treatments. Paddy and straw yield data will be recorded. Pre sowing and post
	harvest soil samples will be analyzed for pH _s , EC _e and SAR. Experiment will
	be laid out according to Randomized Complete Block Design.
PREVIOUS	2016
RESULTS	

Initial Soil A	nalysis:	Irrigation Water Analysis:		
pHs	= 8.20	EC_{iw}	$= 1.33 (dS m^{-1})$	
EC _e	$= 3.89 (dS m^{-1})$	SAR	$= 8.83 \text{ (mmol L}^{-1})^{1/2}$	
SAR	$= 14.53 \ (\text{mmol L}^{-1})^{1/2}$	RSC	$= 7.90 \text{ (me L}^{-1}\text{)}$	

Soil Analysis before rice 2016:

Treatments	pHs	ECe	SAR
		$(dS m^{-1})$	$(\text{mmol } L^{-1})^{1/2}$
T ₁ : Control [Brackish Water (B W)]	8.24	3.88	14.00
T ₂ : Continuous treated water with sulfuric acid on the basis	8.10	3.73	12.90
of RSC of water			
T ₃ : Two irrigations with H ₂ SO ₄ on RSC basis + Two	8.14	3.80	13.50
Irrigations without H ₂ SO ₄			
T ₄ : Alternate irrigations with H ₂ SO ₄ on RSC basis	8.15	3.79	13.40
T ₅ : One irrigation with H ₂ SO ₄ on RSC basis after two	8.18	3.83	13.70
irrigations without H ₂ SO ₄			

Paddy and Straw Yield 2016

Treatments	Paddy	Straw
	(t. h	na ⁻¹)
T ₁ : Control [Brackish Water (B W)]	2.65 C	6.25 C
T ₂ : Continuous treated water with sulfuric acid on the basis of RSC of water	3.40 A	8.21 A
T_3 : Two irrigations with H_2SO_4 on RSC basis + Two Irrigations without H_2SO_4	3.01 B	7.17 B
T ₄ : Alternate irrigations with H ₂ SO ₄ on RSC basis	3.14 B	7.12 B
T_5 : One irrigation with H_2SO_4 on RSC basis after two irrigations without H_2SO_4	3.11 B	6.92 B
LSD	0.2414	0.4014

Soil Analysis after rice 2016:

Treatments	pHs	EC _e	SAR
		$(dS m^{-1})$	$(\text{mmol } L^{-1})^{1/2}$
T ₁ : Control [Brackish Water (B W)]	8.29	3.94	14.22
T ₂ : Continuous treated water with sulfuric acid on the basis of	8.08	2.86	10.55
RSC of water			
T_3 : Two irrigations with H_2SO_4 on RSC basis + Two	8.12	3.44	12.04
Irrigations without H ₂ SO ₄			
T ₄ : Alternate irrigations with H ₂ SO ₄ on RSC basis	8.13	3.60	11.22
T ₅ : One irrigation with H ₂ SO ₄ on RSC basis after two	8.14	3.18	10.57
irrigations without H ₂ SO ₄			

TITLE 19:	TEMPORAL CHANGES IN THE QUALITY OF IRRIGATION
	WATER UNDER CLIMATE CHANGING SCENARIO
OBJECTIVE	To study changes in quality of irrigation water in relation to climatic factors
	(Temperature and Rainfall)
RESEARCHERS	GhulamQadir, Imtiaz Ahmad Warraich, Muhammad AslamAvais and M. A.
	Zaka
DURATION	2015-2030

METHODOLGY	A long term experiment will be carried out to monitor temporal changes in the quality of irrigation water with respect to EC_{iw} , SAR and RSC. The temperature and rainfall data will be recorded while the four tube wells water samples will be analyzed fortnightly.					
PREVIOUS	September 2015 to August 2016					
RESULTS	Rainfall = 498 mm rainfall recorded					

 $EC_{iw}(dS m^{-1})$

Sr.	Date	TW 1	TW 2	TW 3	TW 4	Rainfall	Temp.	Temp.
No.		(1 Campus)	(2 Campus)	(1 Rakh Farm)	(2 Rakh Farm)	mm	(⁰ C) Minimum	(⁰ C) Maximum
1	September, 2015	0.83	1.23	1.36	1.38	75	18.0	35.5
2	October, 2015	0.76	1.21	1.40	1.37	9	15.5	32.0
3	November, 2015	0.72	1.16	1.27	1.28	-	7.5	24.0
4	December, 2015	0.71	1.14	1.30	1.28	-	7.0	19.0
5	January, 2016	0.72	1.13	1.26	1.25	79	3.5	18.5
6	February, 2016	0.68	1.14	1.34	1.33	-	4.5	25.5
7	March, 2016	0.75	1.19	1.33	1.36	93	12.0	25.0
8	April, 2016	0.77	1.20	1.34	1.36	29	16.5	34.5
9	May, 2016	0.80	1.24	1.36	1.33	20	18.0	39.0
10	June, 2016	0.80	1.18	1.43	1.32	49	28.3	40.0
11	July, 2016	0.76	1.17	1.42	1.28	230	26.1	34.9
12	August, 2016	0.81	1.26	1.43	1.32	144	25.4	35.4

Maximum EC_{iw} (0.83 dS m⁻¹), was observed in September, 2015 at maximum temperature 35.50 Centigrade while minimum EC_{iw}(0.68 dS m⁻¹), was observed in February, 2016 at minimum temperature 4.5 Centigrade for Tube Well NO. 1.

- Maximum EC_{iw} (1.26 dS m⁻¹), was observed in August, 2016 at maximum temperature 35.40 Centigrade while minimum EC_{iw}(1.13), was observed in January, 2016 at minimum temperature 3.5 Centigrade for Tube Well NO. 2.
- Maximum EC_{iw} was observed in June (1.43 dS m⁻¹) & August(1.43 dS m⁻¹), 2016 at maximum temperature 40 & 35.40 Centigrade respectively while minimum EC_{iw}(1.26 dS m⁻¹), was observed in January, 2016 at minimum temperature 3.5 Centigrade for Tube Well NO. 3.
- Maximum EC_{iw} (1.38 dS m⁻¹), was observed in September, 2015 at maximum temperature 35.40 Centigrade while minimum EC_{iw}(1.25 dS m⁻¹), was observed in January, 2016 at minimum temperature 3.5 Centigrade for Tube Well NO. 4.

SAR $(mmol L^{-1})^{1/2}$

Sr.	Date	TW 1	TW 2	TW 3	TW 4	Rainfall	Temperature (⁰ C)	Temperature (⁰ C)
No		(1 Campus)	(2 Campus)	(1 Rakh	(2 Rakh	mm	Minimum	Maximum
				Farm)	Farm)			
1	September, 2015	4.81	6.17	8.64	8.02	75	18.0	35.5
2	October, 2015	3.84	6.10	8.29	7.86	9	15.5	32.0
3	November, 2015	3.48	5.10	8.04	7.54	-	7.5	24.0
4	December, 2015	2.84	6.10	7.89	7.39	-	7.0	19.0
5	January, 2016	3.09	5.29	8.05	6.62	79	3.5	18.5
6	February, 2016	2.71	5.24	8.41	7.29	-	4.5	25.5
7	March, 2016	3.66	5.69	8.39	7.53	93	12.0	25.0
8	April, 2016	3.10	5.72	8.04	7.92	29	16.5	34.5
9	May, 2016	4.02	6.19	8.31	7.87	20	18.0	39.0
10	June, 2016	3.53	5.54	8.52	7.23	49	28.3	40.0

11	July, 2016	3.12	5.08	8.65	7.02	230	26.1	34.9
12	August, 2016	3.48	6.01	8.57	7.63	144	25.4	35.4
	N N C .	D (101)	$1 = -1 \times 1/2$	\ 1	1.	a	1 0015	

Maximum SAR (4.81(mmol L⁻¹)^{1/2}), was observed in September, 2015 at maximum temperature 35.50 Centigrade while minimum SAR (2.71 (mmol L⁻¹)^{1/2}), was observed in February, 2016 at minimum temperature 4.5 Centigrade for Tube Well NO. 1.

- Maximum SAR (6.19 (mmol L⁻¹)^{1/2}), was observed in May, 2016 at maximum temperature 39.0 Centigrade while minimum SAR (5.24 (mmol L⁻¹)^{1/2}), was observed in February, 2016 at minimum temperature 4.5 Centigrade for Tube Well NO. 2.
- Maximum SAR (8.65 (mmol L⁻¹)^{1/2}), was observed in July, 2016 at maximum temperature 34.90 Centigrade while minimum SAR(7.89 (mmol L⁻¹)^{1/2}), was observed in December, 2015 at minimum temperature 7.0 Centigrade for Tube Well NO. 3.
- Maximum SAR (8.02 (mmol L⁻¹)^{1/2}), was observed in September, 2015 at maximum temperature 35.50 Centigrade while minimum SAR(6.62 (mmol L⁻¹)^{1/2}), was observed in January 2016 at minimum temperature 7.0 Centigrade for Tube Well NO. 4.

Sr.	Date	TW 1	TW 2	TW 3	TW 4 (2	Rainfall	Temperature	Temperature
No.		(1	(2	(1 Rakh	Rakh	mm	(⁰ C) Minimum	(⁰ C) Maximum
		Campus)	Campus)	Farm)	Farm)			
1	September, 2015	3.42	4.37	7.62	6.60	75	18.0	35.5
2	October, 2015	3.43	4.70	7.92	7.10	9	15.5	32.0
3	November, 2015	3.47	3.27	7.17	6.60	-	7.50	24.0
4	December, 2015	2.47	4.57	7.12	7.10	-	7.00	19.0
5	January, 2016	2.80	4.15	7.59	6.50	79	3.50	18.5
6	February, 2016	2.75	4.39	7.70	6.72	-	4.50	25.5
7	March, 2016	3.30	4.22	7.56	6.85	93	12.0	25.0
8	April, 2016	2.95	4.30	7.65	6.87	29	16.5	34.5
9	May, 2016	3.70	4.72	8.10	7.15	20	18.0	39.0
10	June, 2016	2.80	4.55	8.73	6.68	49	28.3	40.0
11	July, 2016	2.48	4.42	8.20	6.75	230	26.1	34.9
12	August, 2016	3.15	4.30	8.22	6.77	144	25.4	35.4

RSC (me L⁻¹)

- Maximum RSC (3.70 me L⁻¹), was observed in May, 2016 at maximum temperature 39.0 Centigrade while minimum RSC(2.47 me L⁻¹), was observed in December, 2015 at minimum temperature 7.0 Centigrade for Tube Well NO. 1.
- Maximum RSC (4.72 me L⁻¹), was observed in May, 2016 at maximum temperature 39.0 Centigrade while minimum RSC(4.15 me L⁻¹), was observed in January, 2016 at minimum temperature 3.50 Centigrade for Tube Well NO. 2.
- Maximum RSC (8.73 me L⁻¹), was observed in June, 2016 at maximum temperature 40.0 Centigrade while minimum RSC(7.12 me L⁻¹), was observed in December, 2015 at minimum temperature 7.0 Centigrade for Tube Well NO. 3.
- Maximum RSC (7.15 me L⁻¹), was observed in May, 2016 at maximum temperature 39.0 Centigrade while minimum RSC(6.50 me L⁻¹), was observed in January, 2016 at minimum temperature 3.50 Centigrade for Tube Well NO. 4.

TITLE 20:	Comparative study of ratoonability of different sugarcane clones / varieties in salt affected soils					
OBJECTIVE	To investigate the yield performance of ratoon sugarcane crop in salt affected soil					
RESEARCHERS	Manzoor Hussain, M. Q. Nawaz and M. Anwar Zaka					
DURATION	2014-17					
LOCATION	Research Farm, SSRI, PindiBhattian					
NATURE OF	Field Experiment					
EXPERIMENT						
TREATMENTS	New Clones/Varieties					
	1) HSF-240 2) CPF-246					
	3) CPF-247 4) CPF-248					
	5) S-2003-us-127 6) S-2003-us-633					
	7) S-2003-us-704 8) S-2006-SP-93					
	9) S-2006-us-272 10) S-2006-us-658					
METHODOLOGY	Trial was sown using RCB Design with three replications in a salt affected field on dated 23-10-14. Plot size of 4.5 m x 6 m was maintained. Seed rate 75000 DBS ha ⁻¹ was used. Fertilizer 170-112-112 NPK kg ha ⁻¹ was applied. Row to Row distance of 75 cm was maintained. The crop was harvested on dated 15-02-2016 and will be left for testing the performance of ratoon crop. All other agronomic & plant protection measures will be adopted uniformly. Data of yield and yield components will be recorded. Soil samples will be collected and analyzed for pH _s , EC _e and SAR.					

Cane Yield

Treatments	Yield (t ha ⁻¹)
HSF-240	63.97 A
CPF-246	47.76 G
CPF-247	57.74 D
CPF-248	60.40 C
S-2003-us-127	58.91 CD
S-2003-us-633	49.33 FG
CPF-249 (S-2003-us-704)	62.20 B
S-2006-SP-93	54.71 E
S-2006-us-272	50.52 F
S-2006-us-658	53.14 E
LSD	1.6230

Initial soil analysis

pHs	= 8.92
ECe	$= 5.64 \text{ dSm}^{-1}$
SAR	$=27.46 \text{ (mmol L}^{-1}\text{)}^{1/2}$

Post-harvest soil analysis

Treatments	pHs	ECe dSm ⁻¹	SAR (m mol L ⁻¹) ^{1/2}
HSF-240	8.87	5.46	25.30
CPF-246	8.82	5.58	25.43
CPF-247	8.84	5.62	26.42

CPF-248	8.88	5.55	25.53
S-2003-us-127	8.87	5.54	26.41
S-2003-us-633	8.82	5.58	25.60
S-2003-us-704	8.80	5.57	25.65
S-2006-SP-93	8.80	5.52	25.20
S-2006-us-272	8.82	5.56	24.92
S-2006-us-658	8.84	5.58	26.60

TITLE 21:	YIELD IMPROVEMENT OF DIRECT SOWN RICE ON RAISED BEDS USING PRIMING TECHNIQUES IN SALT AFFECTED					
	SOILS					
OBJECTIVE	To evaluate the yield performance of direct seeded rice (dibbling) on					
	raised beds using different seed priming agents in salt affected soils					
RESEARCHERS	M.Q. Nawaz, Manzoor Hussain and Dr. M. Anwar Zaka					
DURATION	2015-2018					
LOCATION	Research Farm, SSRI, PindiBhattian					
NATURE OF	Field Experiment					
EXPERIMENT						
TREATMENTS	Priming Agents					
	1) Potassium dihydrogen phosphate (2%)					
	2) Zinc Sulphate (2%)					
	3) Single super phosphate (1%)					
	4) MgSO ₄ (2%)					
	5) Single super phosphate + Urea (1%) each					
METHODOLOGY	A salt affected field will be selected, leveled and well prepared for					
	making beds of 90 cm apart. The rice variety (KSK-133) will be sown by					
	dibbling maintaining PxP and RxR distance of 30 cm. Three seeds will be					
	sown per hill. All P& K will be applied at sowing and N will be applied					
	in two splits (half at sowing and other half at tillering). Experiment will					
	be laid out in RCBD with three replications. Plot size will be 3.6 m x 4.5					
	m. All other agronomic & plant protection measures will be adopted					
	uniformly. Data of yield and yield component will be recorded. Soil					
	samples will be collected and analyzed for pH _s , EC _e and SAR before					
	sowing and after the harvest of crop.					
PREVIOUS	2016					
RESULTS						

Paddy Yield (t ha⁻¹)

Treatment	Paddy Yield t ha ⁻¹
KH ₂ PO ₄	4.61 CD
ZnSO ₄	4.53 D
SSP	5.23 A
MgSO ₄	4.83 BC
SSP+Urea	4.92 B
LSD	0.2576

Initial soil analysis

 $\begin{array}{ll} pH_{s} & = 8.80 \\ EC_{e} & = 5.46 \ dSm^{-1} \\ SAR & = 36.57 \ (mmol \ L^{-1})^{1/2} \\ \end{array} \\ \mbox{Post-harvest soil analysis} \end{array}$

Treatments	pHs	ECe	SAR
		$(dS m^{-1})$	(m mol L ^{-1 1/2})
Potassium dihydrogen phosphate (2%)	8.73	5.41	34.42
Zinc Sulphate (2%)	8.69	5.38	33.50
Single super phosphate (1%)	8.63	5.32	33.36
MgSO ₄ (2%)	8.65	5.34	33.30
Single super phosphate + Urea (1%) each	8.68	5.36	33.48

TITLE 22:	MANAGEMENT OF SALINE SODIC WATER BY USING					
	DIFFERENT AMMENDMENTS AND SOWING TECHNIQUES					
OBJECTIVE	To assess the role of different organic and inorganic amendments by using					
	different sowing techniques to mitigate the harmful effects of high RSC					
	water on yield of direct seeded rice and wheat crop.					
RESEARCHERS	M.Q. Nawaz, Manzoor Hussain, A.I. Saqib and M.A. Zaka					
DURATION	2013-2018					
LOCATION	Research Farm, SSRI, Pindi Bhattian					
NATURE OF	Field Experiment					
EXPERIMENT						
TREATMENTS	A) Sowing Techniques					
	1) Ridge sowing					
	2) Broadcast sowing					
	B) Soil Amendments					
	1) Gypsum on the basis of RSC of water					
	2) Press mud @ 10 t ha^{-1}					
	3) Press mud @ 20 t ha^{-1}					
	4) Biogas slurry @ 10 t ha ⁻¹					
	5) Biogas slurry @ 20 t ha ⁻¹					
METHODOLOGY	A normal field will be selected, leveled and prepared for sowing of rice (Super Bas.). Rice seed @ 50 kg ha ⁻¹ will be used. Experiment will be laid out in split plot design with three replications. Sub-plot size will be kept 6 m x 4 m. Recommended dose of fertilizer 150-86-60 NPK kg ha ⁻¹ will be applied. Organic and inorganic amendments will be applied one month before sowing of rice as per treatment plan. Sowing techniques will be kept in main plots and soil amendments in sub-plots. All other agronomic & plant protection measures will be adopted uniformly. Data regarding yield & yield components will be recorded. Soil samples will be collected and analyzed for pH _s , EC _e and SAR.					
PREVIOUS	2016					
RESULTS -1						

Paddy yield (t ha⁻¹)

Treatments	Ridge Sowing	Broadcast	Mean
Gypsum on the basis of RSC of Water	2.68 de	2.49 e	2.58 C
Press-mud @ 10 t ha^{-1}	2.73 de	2.55 de	2.64 C
Press-mud @ 20 t ha^{-1}	3.06 bc	2.77 cd	2.91 B
Biogas slurry @ 10 t ha ⁻¹	3.09 ab	2.79 bcd	2.94 B
Biogas slurry @ 20 t ha ⁻¹	3.33 a	3.07 ab	3.20 A
Mean	2.98 A	2.73 B	

LSD for sowing techniques = 0.2272 LSD for interaction = 0.2622

LSD for soil amendments = 0.1854

Amendments Analyses (%)

Amendments	Total N	Total P	Total K
Press-mud	1.25	0.90	0.60
Bio-slurry	1.50	1.35	0.40

Initial soil analysis

Initial soil analysis		Tub-well water analysis		
pH_s	= 8.10	SAR	$=8.06 \pmod{L^{-1}}^{1/2}$	
EC_e	= 2.88 dS m ⁻¹	EC_{iw}	=1.44 dS m ⁻¹	
SAR	$= 12.90 \pmod{L^{-1}}^{1/2}$	RSC	$= 8.40 \text{ me } \text{L}^{-1}$	

Post-harvest soil analysis

Sr.	Treatments	Ridg	e sowing		Broad	cast sowin	g
		рН _s	EC _e (dS m)	SAR -1 1/2 (mmol L)	рН _s	EC _e . (dS m)	SAR -1 1/2 (mmol L)
1	Gypsum on the basis of RSC of Water	8.18	3.44	14.63	8.18	3.42	13.59
2	Press-mud @ 10 t ha ⁻¹	8.12	3.48	14.65	8.11	3.56	14.52
3	Press-mud @ 20 t ha ⁻¹	8.14	3.45	14.53	8.14	3.46	14.48
4	Biogas slurry @ 10 t ha	8.14	3.46	14.55	8.12	3.45	14.56
5	Biogas slurry @ 20 t ha	8.14	3.41	14.35	8.14	3.45	14.53

TITLE 23:	UTILIZATION OF SALT AFFECTED LAND USING PIT
	PLANTING TECHNIQUE FOR SUGERCANE
OBJECTIVE	To develop the technology for sugarcane production in salt affected soils
RESEARCHERS	Manzoor Hussain, M.Q. Nawaz and Dr. M. Anwar Zaka
DURATION	2014-17
LOCATION	Research Farm, SSRI, Pindi Bhattian
NATURE OF	Field Experiment
EXPERIMENT	
TREATMENTS	Treatments
	1) Pits without amendment
	2) Pits with Gypsum @ 50 % GR
	3) Pits with Gypsum @ 100 % GR
	4) Pits with FYM @ 20 t ha ⁻¹
	5) Pits with Gypsum @ 50 % + FYM @ 10 tha ⁻¹
METHODOLOGY	Salt affected field will be selected, leveled and well prepared for planting
	of sugarcane crop. Trial will be laid out in RCBD with three replications.
	Plot size will be kept as 4.5 m X 6 m. Pits of 60 cm diameter and 90 cm
	depth will be dug with Tractor mounted auger. Pits will be filled
	according to the treatments. Pit to Pit distance will be kept 50 cm and
	Row to Row distance 75cm will be maintained. All other agronomic &
	plant protection measures will be adopted uniformly. Data of yield &
	yield components will be recorded. Soil samples will be collected and
	analyzed for pH _s , EC _e , SAR and GR.
PREVIOUS	
RESULTS	

Cane Yield

Treatments	Cane Yield (t ha ⁻¹)
Pits without amendment	48.73 C
Pits with Gypsum @ 50 % GR	58.07 B
Pits with Gypsum @ 100 % GR	67.08 A
Pits with FYM @ 20 t ha ⁻¹	53.89 BC
Pits with Gypsum @ 50 % + FYM @ 10 t ha ⁻¹	61.25 AB
LSD	7.8329

Initial soil analysis

= 8.96
$= 10.55 \text{ dSm}^{-1}$
$=41.37 \text{ (mmol L}^{-1})^{1/2}$
$= 3.25 \text{ t acre}^{-1}$

Post-harvest soil analysis

Treatments	pHs	ECe	SAR
		$(dS m^{-1})$	$(m \mod L^{-1})^{1/2}$
Pits without amendment	8.92	10.43	39.45
Pits with Gypsum @ 50 % GR	8.50	8.62	37.91
Pits with Gypsum @ 100 % GR	8.46	6.88	35.00
Pits with FYM @ 20 t ha ⁻¹	8.51	7.85	38.75
Pits with Gypsum @ 50 % + FYM @ 10 t ha ⁻¹	8.47	7.27	36.65

TITLE 24:	PERFORMANCE OF NEW SUGARCANE CLONES/VARIETIES	
	IN SALT AFFECTED SOILS	
OBJECTIVE	To check the yield performance of new clones/varieties of sugarcane crop	
	in salt affected soil	
RESEARCHERS	M. Q. Nawaz and Manzoor Hussain and Dr. M. Anwar Zaka	
DURATION	2014-17	
LOCATION	Research Farm, SSRI, Pindi Bhattian	
NATURE OF	Field Experiment	
EXPERIMENT		
TREATMENTS	New Clones/Varieties	
	1) HSF-240 2) CPF-246	
	3) CPF-247 4) CPF-248	
	5) S-2003-us-127 6) S-2003-us-633	
	7) S-2003-us-704 8) S-2006-SP-93	
	9) S-2006-us-272 10) S-2006-us-658	
METHODOLOGY	A salt affected field will be selected leveled and prepared for sowing of sugarcane crop. Trial will be laid in RCB design having three replications with plot size of 4.5 m x 6 m. Seed rate 75000 DBS ha ⁻¹ will be used. Fertilizer 170-112-112 NPK kg ha ⁻¹ will be applied. Row to Row distance of 75 cm will be maintained. All other agronomic & plant protection measures will be adopted uniformly. Data of yield and yield components will be recorded. Soil samples will be collected and analyzed for pH _s , EC _e and SAR.	
PREVIOUS	2016	
RESULTS		

pHs	= 9.01
EC _e	$= 5.69 \text{ dSm}^{-1}$
SAR	$=27.51 \pmod{L^{-1}}^{1/2}$

Post harvest soil analysis

S.No.	Treatments	pHs	ECe dSm ⁻¹	$\mathbf{SAR}(m \text{ mol } L^{-1})^{1/2}$
1	S-2003-us-704	8.96	5.51	25.35
2	CPF-248	8.91	5.63	25.48
3	S-2003-us-127	8.93	5.67	26.47
4	S-2006-us-272	8.95	5.61	25.58
5	S-2003-us-633	8.96	5.59	26.46
6	HSF-240	8.92	5.63	25.65
7	S-2006-SP-93	9.00	5.62	25.60
8	S-2006-us-658	8.88	5.57	25.25
9	CPF-247	8.90	5.61	24.97
10	CPF-246	8.94	5.63	26.65

Cane Yield

Treatments	Yield (t ha ⁻¹)
S-2003-us-704	56.34 BC
CPF-248	50.99 CD
S-2003-us-127	59.33 AB
S-2006-us-272	42.49 EF
S-2003-us-633	45.44 DEF
HSF-240	49.35 CDE
S-2006-SP-93	65.36 A
S-2006-us-658	39.57 F
CPF-247	55.59 BC
CPF-246	61.95 AB
LSD	7.7496

TITLE 25:	Effect of different irrigation frequencies on direct seeded rice in salt	
	affected soil	
OBJECTIVE	To find out the delta of water and irrigation frequencies for direct seeded	
	rice in salt affected soils.	
RESEARCHERS	M. Rizwan and Dr. M. Anwar Zaka	
DURATION	2016-2020	
LOCATION	Research Farm, SSRI, Pindi Bhattian	
NATURE OF	Field Experiment	
EXPERIMENT		
TREATMENTS		
	Irrigation Frequencies	
	• 4 days	
	• 6 days	
	• 8 days	

	• 10 days
METHODOLOGY	A salt affected field will be selected and prepared for sowing of rice
	(Shaheen basmati) by direct seeding. Irrigations will be applied according
	to treatment plan using cut throat flume. Recommended dose of fertilizer
	(150-85-60 N,P ₂ O ₅ ,K ₂ O kg ha ⁻¹) will be applied. Data of yield and yield
	components will be recorded. Soil samples before start of study and after
	harvest of each crop will be collected and analyzed for pH _s , EC _e , SAR,
	HC and BD. Design will be RCBD with three repeats having plot size 8m
	х бт.
PREVIOUS	Kharif 2016
RESULTS	

Soil analyses before start of study

Parameter	Soil Depth (0-15) cm	Soil Depth (15-30) cm
pHs	8.80	9.01
$EC_e(dS m^{-1})$	4.33	3.46
SAR $(\text{mmol } L^{-1})^{1/2}$	30.15	30.77
BD $(Mg m^{-3})$	1.53	
HC (cm hr^{-1})	0.48	

Effect of Irrigation Frequencies on Paddy and Straw Yield (t ha⁻¹)

Irrigation Frequency	Paddy Yield (t ha ⁻¹)	Straw yield (t ha)	No. of Irrigations Applied	Delta of water (Inches)	Water use Efficiency (kg ha mm)
4 Days	2.82 BC	5.32 B	24	87	1.28
6 Days	2.88 B	5.54 AB	16	63	1.80
8 Days	3.18 A	5.87 A	12	51	2.45
10 Days	2.60 C	5.17 B	09	42	2.44
LSD	0.2280	0.4038			

Note: Rainfall (15 inches) occurred during kharif-2016 is included in delta of water.

Soil analysis after harvest of rice crop

Irrigation Frequency	pH _s	$\frac{\mathbf{EC_e}}{(\mathrm{dS \ m}^{-1})}$	SAR -1 1/2 (mmol L)
4 Days	8.77	4.01	29.50
6 Days	8.78	4.06	29.43
8 Days	8.78	4.09	29.22
10 Days	8.79	4.23	29.65

TITLE 26:	MAINTENANCE OF GERM PLASM/ GENEPOOL TOLERANT TO SALINITY
OBJECTIVE	To preserve the genetic stock/gene pool for future breeding programme
RESEARCHERS	Muhammad Khalid Bhatti and Ghulam Shabbir
DURATION	A regular feature
LOCATION	SSRI,Pindi Bhattian
TREATMENTS	Rice lines /cultivars

	Fine	Coarse	Coarse (exotic)
	Shaheen Bas	Ks-282	IRRI =22 lines
	PB-95	IR-6	
	Super Bas	NAIB-6	
	Bas-370	IR-9	
	Bas-385	Nurty 2016 4 lines	
	Bas-2000	Ksk-133	
	SRI-13	Ksk-434	
	SRI-7		
	SRI-8		
	SRI-12		
METHODOLOGY	These varieties/genot	types will be grown in	normal soil. A plot size of
	5m x 3m will be main	ntained. Fertilizer NPk	K will be applied @ 150-86-
	60 kg ha^{-1} . The seed	of each variety/line wi	ll be harvested and preserved
	for next season. The	data for yield and yield	l components will be
	recorded. Off type pl	ants will be roughed or	ut. Pre and post harvest Soil
	analysis will be carri	ed out for pHs, EC_e as	nd SAR
PREVIOUS YEARS	The nursery of forty	genotypes was raised a	and transplanted and
	seed of these lines	was preserved after	harvesting for next coming
	season		

TITLE 27:	DEVELOPING HIGH YIELDING FINE GRAIN RICE LINES FOR			
	SALINITY TOLERANCE			
	Experiments:			
	7.a (2017): Screening of 20 rice germplasm lines collected from national and international research institutes against salinity.			
	7.b (2018): Hybridization among salt tolerant and high yielding lines selected from 2017 trial.			
	7.c (2019): Evaluation of F_1 population against salinity.			
	7. d (2020): Selection of salt tolerant combinations from F_2 segregating			
	population.			
	7. e (2021): Selection of high yielding and extra long grain rice combinations from F3 population grown under salinity conditions.			
OBJECTIVE	To find out salt tolerant rice lines for growing on moderately salt affected			
	soil.			
RESEARCHER	Mr. Muhammad Khalid Bhatti and Mr.Ghulam Shabbir			
DURATION	Continuous			
LOCATION	SSRI, Pindi Bhattian			
NATURE OF	Lysimeter Experiment			
EXPERIMENT				
TREATMENTS				
	Twenty rice varieties/ lines collected from national and international			
	institutes.			
	Salinity Levels: 3			
	$1.EC_{e} < 4dS m^{-1}$ SAR $< 13.2 (mmolL^{-1})^{1/2}$			
	2.EC 5.5dS m ⁻¹ SAR 25 $(mmolL^{-1})^{1/2}$			
	$3.EC_e$ 7.0 dS m ⁻¹ SAR 35 (mmolL ⁻¹) ^{1/2}			

METHODOLOGY	Soil sampling will be done to monitor the desired salinity levels for experiment initiation. Salinity/ sodicity will be developed using quadratic equation. Seedlings from each line rice nursery will be transplanted in various salinity levels using CR Design with 3 replications. All recommended agronomic practices will be followed. At maturity, data of yield and yield components will be recorded and statistically analyzed. At panicle initiation stage plants will be sampled and analyzed for Na and K contents and K/Na ratio.
PREVIOUS RESULTS	New Experiment

TITLE 28:	SCREENING OF RICE GERMPLASM IN SALT AFFECTED SOIL
OBJECTIVE	To find out the salt tolerance potential of rice lines for further use in
	breeding programme.
RESEARCHERS	Muhammad Khalid Bhatti and Ghulam Shabbir
DURATION	Continuous nature
LOCATION	SSRI,Pindi Bhattian
TREATMENTS	Varites /lines collected from different locations.
METHODOLOGY	The experiment will be conducted to screen out various rice lines against
	salinity/sodicity. The trial will be conducted in salinity blocks by artificially developed salinity levels of $EC_e 5$, 6 and 7 dS m ⁻¹ along with sodicity levels of SAR 30(mmol L ⁻¹) ^{1/2} developed by adding salts i.e. NaCl, Na ₂ SO ₄ , CaCl ₂ and MgSO ₄ by using quadratic equation. By using CRBD layout, 7 advanced lines/varieties were tested by transplanting each variety in a single row of 150 cm length Recommended dose of fertilizer (150-86-60 NPK kg ha ⁻¹) will be applied to each experimental unit. Data of Yield and Yield components will be recorded. At panicle initiation stage plants will be sampled and analyzed for Na and K contents and for K / Na ratio.
PREVIOUS	2016
RESULTS	

Initial Soil Analyses of salinity blocks

Sr. No.	Lines /Varieties	$EC_e - 2.5$	EC _e -5.0	EC _e -6.00	EC _e -7.00
		$(dS m^{-1})$	$(dS m^{-1})$	$(dS m^{-1})$	$(dS m^{-1})$
		SAR-10.00	SAR-30.00	SAR-30.00	SAR-30.00
		$(\text{mmolL}^{-1})^{1/2}$	$(\text{mmolL}^{-1})^{1/2}$	$(mmolL^{-1})^{1/2}$	$(\text{mmolL}^{-1})^{1/2}$
			Yield	(t. h ⁻¹)	
1	PB-95	3.94 AB	3.18 A	2.16 A	1.08 A
2	SRI-12	3.69 DE	2.85 C	1.95 BC	0.86 BC
3	T-05	3.41 E	2.64 C	1.81 CD	0.77 BCD
4	1121	4.06 AB	1.94 D	1.66 E	0.62 D
5	SRI-13	3.64 CD	2.96 B	1.91 ABC	0.84 AB
6	Basmati-515	4.18 A	2.05 D	1.68 DE	0.65 CD
7	Shaheen Basmati	3.91 BC	3.06 AB	2.08 AB	0.91 AB
	LSD	0.2406	0.1590	0.1912	0.2129

ECe – 2.26	ECe-4.98	ECe-5.88	ECe-6.76
$(dS m^{-1})$	$(dS m^{-1})$	$(dS m^{-1})$	$(dS m^{-1})$
SAR-9.88	SAR-27.68	SAR-29.26	SAR-29.58
$(mmolL^{-1})^{1/2}$	$(mmolL^{-1})^{1/2}$	$(mmolL^{-1})^{1/2}$	$(\text{mmolL}^{-1})^{1/2}$

TITLE 29:	YIELD EVUALTION TRIAL FOR ADVANCE RICE	
	LINES/VARITES IN SALT AFFECETED SOIL.	
OBJECTIVE	To find out high yielding rice lines in the rice growing area.	
RESEARCH	Muhammad Khalid Bhatti and Ghulam Shabbir	
WORKERS		
DURATION	Continuos Nature	
TREATMENTS	Lines / varieties-8	
LOCATION	SSRI,Pindi Bhattian and Hafizabad	
METHODOLOGY	The nursery will be raised in normal soil and will be transplanted in	
	moderately salt affected soil. The recommended dose of NPK(150-	
	86-60) kg/ha ⁻¹ fertilizer will be applied. The experiment will be laid	
	according to RCBD having net plot size of 3m x 5m.The	
	recommended cultural practices will be carried out till maturity. At	
	maturity yield data will be recorded.	
PREVIOUS	2016	
RESULT		

Sr. No.	Varieties/lines	Paddy Yield (t. ha ⁻¹)		
1	PB-95	3.29 A		
2	T-05	2.85 C		
3	SRI-12	2.65 C		
4	SRI-13	2.89 B		
5	Basmati-515	1.74 D		
6	Shaheen Basmati	3.19 A		
7	Super Basmati	1.57 E		
LSD		0.0875		

Initial soil analyses

 $\begin{array}{l} pH_s \ \ 8.73 \\ EC_e \ \ 4.68 \ -5.66 \ dS \ m^{-1} \\ SAR \ \ 32.25 \ -37.65 \ (mmol \ L^{-1})^{1/2} \end{array}$

Post-harvest soil analyses

pH_s 8.71 EC_e 4.59 - 5.31 dS m⁻¹ SAR 30.36 - 34.36 (mmol L^{-1})^{1/2}

TITLE 30:	NATIONAL UNIFORM RICE YIELD TRIAL	
OBJECTIVE	To find out high yielding salt tolerant rice variety/line	
RESEARCHERS	Muhammad Khalid Bhatti and Ghulam Shabbir	
DURATION	A regular feature	
LOCATION	SSRI Pindi Bhattian	
TREATMENTS	No of entries- supplied by the Rice	
	Coordinator NARC, Islamabad	

METHODOLOGY	The trial will be laid out in RCBD with three replications 3m x 5m
	plot size. Trial will be transplanted in moderately salt affected soil.
	Recommended agronomic practices will be followed till maturity.
	Data on yield and yield components will be recorded.
PREVIOUS	2016
RESULTS	

Sr.	Genotype	Plant	No. of	No. of grain	1000 grain	Paddy	Maturity	Days to
No.		Height	tillers/	per panicles	weigh t (g)	Yield	days	50%
		(cm)	plant			(tha^{-1})		flowering
1	FR16001	56	14	52	29.74	2.432	102	62
2	FR16002	49	15	63	30.69	2.741	101	61
3	FR16003	61	16	56	25.07	2.221	105	65
4	FR16004	63	12	61	25.94	2.113	104	64
5	FR16005	65	15	65	26.09	2.321	103	63
6	FR16006	61	13	59	30.07	2.531	102	62
7	FR16007	60	15	57	29.36	2.642	100	60
8	FR16008	59	17	62	31.79	2.921	104	64
9	FR16009	63	14	56	27.39	2.431	105	65
10	CR16010	65	13	59	22.07	2.831	99	59
11	CR16011	62	15	56	21.39	2.941	98	58
12	CR16012	59	13	52	27.33	2.314	97	57
13	CR16013	54	12	51	27.25	2.431	95	55
14	CR16014	58	14	54	24.6	21.71	98	58
15	CR16015	56	13	53	25.9	2.223	97	57
16	CR16016	58	11	55	26.91	2.341	98	58
17	CR16017	59	12	52	25.34	2.341	99	59
18	CR16018	61	11	57	25.77	2.341	98	58
19	CR16019	58	12	51	24.82	2.412	97	57
20	CR16020	56	14	49	27.72	2.413	96	56
21	CR16021	58	10	54	24.82	1.931	99	59
22	CR16022	60	13	51	27.02	2.341	97	57
23	CR16023	59	15	53	28.29	2.313	98	59
24	CR16024	57	14	49	27.61	2.132	99	59

Initial soil analyses

Post harvest soil analyses

pHs	=8.60	pHs	=8.57
EC _e	=5.55dS m ⁻¹	ECe	$= 5.53 \text{ dS m}^{-1}$
SAR	$= 31.35 \text{ (mmol L}^{-1})^{1/2}$	SAR	$= 31.33 \text{ (mmol L}^{-1})^{1/2}$

TITLE 31:	MAINTENANCE OF SALT TOLERANT RICE VARIETY		
	SHAHEEN BASMATI		
OBJECTIVE	To make the variety Shaheen basmati true to its genotypes		
RESEARCHER	Mr. Muhammad Khalid Bhatti and Mr. GhulamShabbir		
DURATION	2017		

LOCATION	SSRI, Pindi Bhattian
NATURE OF	Continuous nature
EXPERIMENT	
TREATMENTS	Shaheen basmati,PB-95,SRI-13,
METHODOLOGY	The experiment will be laid out for perpetuation of approved variety
	Shaheen Basmati to maintain to true to type form in order to avoid
	degeneration through mechanical mixing and mutation. Thirty panicles of
	selected plants from Pre-basic seed of salt tolerant approved variety
	Shaheen Basmati will be grown plant to row progenies. Ten uniform
	progeny lines will be selected to grow individual progeny blocks. Five
	most uniform progeny blocks will also be selected and bulked to produce
	pure seed for further use during next season.
PREVIOUS	Three kg BNS and Ten kg pre-basic seed of Shaheen Basmati was
RESULTS	produced.