ANNUAL PROGRAM OF RESEARCH WORK RABI 2014-15

WHEAT RESEARCH INSTITUTE, FAISALABAD

INTRODUCTION

Area under wheat during 2013-14 was 9.039 million hectares showing an increase of 3.98 percent over last year's area of 8.693 million hectares because of the combined efforts of scientists and Government interest to enhance wheat production. The wheat production of 25.286 million tons was gained with per hectare yield of 2797 kg ha⁻¹, an increase of 4.48 percent over the last year's production of 24.2 million tons was observed. Resultantly the country became self-sufficient.

Wheat crop has to face yield limiting factors like terminal or post-anthesis heat, drought, salinity, frost, aphids and changing virulence pattern of diseases. Likewise, to earn the foreign exchange through the competition in the international market, wheat quality has pivotal importance now a days. In the scenario of nutritional deficiencies, biofortified wheat has also gained the attention of the scientists.

Scientists of this institute have made tangible efforts to address the challenges faced by wheat crop due to global warming in the country in interaction with International organizations like CIMMYT Mexico, ICARDA Syria and USDA. About60 experiments were conducted in the research area of this institute beside NUWYT and MTWV under normal and late sown conditions in different agro-ecological zones of the Punjab province. Different projects like conservation agriculture, harvest plus, global warming, limiting water, salt & aphid tolerance and durable rust resistance are also being implemented by this institute. The scientists of the institute are in a continuous struggle to break the yield barriers. Their efforts are to move from green revolution to the gene revolution. The researchers team of Wheat Research Institute is well aware of the fact that during 2050 the 334.68 million populations will need about 37.14 million tons of wheat grain and the country must meet these requirements for its integrity.

Last year, advanced lines V-12304, V-11098 and V-11138 got 1st, 2nd and 3rdposition, respectively in MTWV (normal) as well as on overall basis. While advanced lines V-11138 and V-12304 stood 1st and 2nd, respectively in MTWV (short) as well as on overall basis.

Similarly, Galaxy-13 remained at the top position with 4141 kg ha⁻¹ yield, while V-10110 (4070 kg ha⁻¹) got 3^{rd} position in NUWYT (normal) while in case of NUWYT (short), V-99172 remained at top with 3675 kg ha⁻¹ yield, followed by V-99114(3618 kg ha⁻¹).

Galaxy-13 was approved and recommendation for cultivation in Punjab/Pakistan.

(Dr. MAKHDOOM HUSSAIN)

Director Wheat Research Institute Faisalabad

CONTENTS

Sr. No.	Title	Page
	Bread Wheat (<i>Triticumaestivum</i> L.)	
1	Crossing block and hybridization	1
2	Study of filial generations (F1- F7) of bread wheat.	2
3	Hybrid seed production.	3
4	Evaluation of advanced lines/varieties of wheat for drought tolerance	4
5	Study of advanced lines of wheat for lodging tolerance at grain filling stage.	5
6	Screening of bread wheat germplasm for heat tolerance under late sown conditions.	5
7	Evaluation of bread wheat germplasm for post-anthesis heat stress	6
8	Rapid development of climate resilient wheat varieties for South Asia	7
9	Yield evaluation of CIMMYT material under normal and late sown conditions.	7
10	Evaluation of international material (CIMMYT / ICARDA) of bread wheat	8
11	Preliminary information wheat yield trials (a-trials)	9
12	Regular wheat yield trials (B-trials)	11
13	Micro wheat yield trial (MWYT).	13
14	National uniform wheat yield trial (NUWYT)	15
	Durum wheat (Triticum durum) and Triticale (Triticosecale)	
15	Maintenance of durum and triticale germplasm.	16
16	Crossing bread wheat with durum wheat	16
17	Study of breeding material (F ₁ -F ₇).	17
18	Evaluation of international yield trials (CIMMYT) of durum wheat	17
	Barley (Hordeumvulgare)	
19	Maintenance of barley germplasm and hybridization	18
20	Study of filialgenerations (F ₁ , F ₂ , F ₃ & F ₆) of barley	18
21	Preliminary barley yield trial	19
22	Regular barley yield trial	20
23	Micro yield trial of barley varieties	21

24	Sowing date trial of barley.	22
25	Seed production of barley varieties and advanced lines.	23
	Wheat Pathology	
26	Rust trap nurseries	24
27	Estimation of yield losses due to leaf and yellow rusts	25
28	Screening of wheat and barley advanced lines/varieties against rusts at different locations	26
29	Evaluation of advanced lines/varieties for seedling and adult plant resistance to leaf rust	26
30	Screening of advanced wheat materials against karnal bunt (<i>Tilletiaindica</i>)	27
31	Survey for karnal bunt and black point of wheat	28
32	Wheat rust surveillance in Punjab	29
	Agronomy	
33	Effect of climatic change on sowing time of wheat crop	30
34	Response of seed rate on grain yield of advanced wheat lines	31
35	Effect of different levels of fertilizer on grain yield of wheat.	32
36	Effect of split application of nitrogen on grain yield of wheat	34
37	Water requirement and its time of application to fetch maximum wheat grain yield	35
38	Effect of seed rate cum spacing on grain yield of wheat	36
	Wheat Entomology	
39	Evaluation of wheat genotypes against aphids	37
40	Survey of aphid population on wheat crop in different ecological zones of the Punjab	38
41	Screening of wheat germplasm against aphids	38
	Seed production	
42	Production of breeders' nucleus seed of wheat advanced lines and varieties.	39
43	Pre-basic seed production of bread and durum wheat cultivars & advance lines.	40
44	Seed production of bread and durum wheat cultivars and advanced lines.	41
45	Cereal Technology	10
45	Effect of zinc fortification on physico-chemical properties of whole wheat flour	42
46	Effect of vitamin a fortificant on wheat flour quality during storage	42

47	Effect of different ratios of wheat, barley, maize and sorghum composite flours on quality characteristics of chapatti	43
48	Quality evaluation of advanced bread wheat lines/ varieties	44
10	grown in different agro-ecological zones	•••
49	Effect of planting time on grain quality traits	45
50	Effect of different fertilizer treatments on wheat quality	46
51	Effect of split application of nitrogen on grain yield of wheat	47
52	Suitability of new spring wheat varieties for the preparation of	47
	value added products	
53	Quality determination of advanced lines of barley	48
54	Effect of different tempering conditions on the milling yield of	49
	current wheat varieties	
	Shuttle Breeding Programme	
55	Race analysis of yellow, leaf and stem rust samples obtained	50
	from fields of WRI Faisalabad	
56	Seed increase of rust differential sets (near isogenic lines)	50
57	Screening of wheat germplasm against rusts	50
58	Study of latency period in selected wheat cultivars	51
59	Screening of wheat advanced lines for powdery mildew	51
	Blumeriagraminisf.sp. Tritici	
60	Summer wheat screening nurseryKaghan	52
61	Stem rust screening nursery Kenya	53
62	Development of high yielding and disease resistant wheat	53
	variety for rice zone	
	Projects	
63	Safeguarding Pakistani wheat from potential disease threats	54
	(PARB funded project # 161).	
1	Wheat crop improvement for drought tolerance through	54
	biotechnology (PARB funded project # 103)	
2	Wheat productivity enhancement programme (W-PEP)	55
3	Development of halophytic wheat for agriculture on salt- affected lands	56

BREAD WHEAT (Triticumaestivum L.)

1. TITLE	CROSSING BLOCK AND HYBRIDIZATION			
OBJECTIVES	 i. To maintain genotypes/lines with their typical characteristics. ii. To combine high yield, adaptability and tolerance to biotic and abiotic stresses, quality and other desirable characteristics. iii. To incorporate effective rust resistant genes in local germplasm. 			
RESEARCH WORKER (S)	Dr. Javed Ahmad, Muhammad Zulkiffal, Saima Gulnaz and Dr. Makhdoom Hussain			
PROJECT DURATION	2014-15 (continuous nature)			
LOCATION	Wheat Researce	ch Institute, Faisalabad.		
TREATMENTS & METHODOLOGY Crossing block comprising ????entries will be planted twice (d and 3 rd week of Nov.). Each entry will be sown in a paired row 2.5 meter length. All the entries will be evaluated for in agronomic, physiological and pathological parameters. If crosses will be attempted to accumulate genes for higher yield resistance and other desirable attributes. About 1000 crosses attempted during the coming Rabi season.				
	Sr. #	Germplasm Groups	No. of varieties / lines	
	1	Current varieties of Pakistan	39	
	2	Old varieties	30	
	3	Exotic lines	27	
	4	Disease resistant	100	
	5	Drought tolerant	29	
	6	Salt tolerant	06	
	7	Heat tolerant	15	
	8	Grain quality	07	
	9	High grain weight	02	
	10	High yielding	171	
	11	Harvest plus TriticumPyrum	<u>14</u> 05	
	12	CISCA	10	
	13	Miscellaneous	32	
	15	Total	?????	
		1.7641	••••	
PREVIOUS YEAR'S RESULTS	reconstituted	ossing block comprised of to face the new challenges on the series of studies during last der:	the basis of information	

Character	Range
Plant height	40-140 cm
Days to heading	82-155
Days to maturity	146-161
Tillers/plant	09-27
1000 grain weight.	16.4-43.8
Leaf rust reaction	0- 100 S
Yellow rust reaction	0-100 S

2. TITLE	STUDY OF FILIAL GENERATIONS (F1-F7) OF BREAD WHEAT.
OBJECTIVES	 i. To evaluate the generations under irrigated and stress (heat, drought & rusts) conditions. ii. Selection of single plants resistant to diseases and having good plant type in F₂. F₄generationsusingselected bulk method. iii. Selection of desirable single head progenies in successive generations (F₅& F₆). iv. Selection of uniform, vigorous advanced lines (single head row progenies) resistant to diseases in F₇ generation for grain yield testing in preliminary yield trials.
RESEARCH WORKER (S)	Muhammad MuzaffarIqbal , WaseemSabir, SemabNasirand Javed Anwar
PROJECT DURATION	2014-15 (continuous nature)
LOCATION	Wheat Research Institute, Faisalabad.
TREATMENTS & METHODOLOGY	F ₁ generation will be planted in irrigated conditions. F ₂ to F ₇ will be exposed to artificial epidemic rusts condition. Epidemic rusts conditions will be created by spreading dust of rusts spores. Plants infected with rusts (in pots) will be kept in spreader rows around the field. Water will also be sprayed for increasing humidity. On spread of rusts, good and resistant plants will be selected and selected bulk method will be used for generation advancement. Uniform maturity of tillers, plant height, lodging resistance and grain diseases will also be considered during selection. Generations of specific crosses i.e., drought and heat will be sown in their respective environmental conditions. The material will be planted with the following specifications during first fortnight of November, 2014 and fertilized @120:90:60: N: P: K kg ha ⁻¹ at sowing time.

	Gen	nerations	No. of crosses	Entries	Plot size
	F1 si	ingle crosses	1122	1122	1 row x 2.5m
	F ₂		258	747	12 rows×8m
	F ₃		413	413 SHB	$3 \text{ rows} \times 3 \text{m}$
	F_4		82	82 SHB	3 rows×3m
	F ₅		69	69 SHB	3 rows×3m
	F ₆		82	1640 SHR	1 row, 2.5m
	F_7		56	211 SHRP	4 rows \times 4m
		U	oulk, and SHRP=S	ingle head rov	v progeny,
	SHR	=Single head ro	OWS		
PREVIOUS YEAR'S RESULTS	Г	~		~	
RESULIS		Generations	Studied Crosse		
			/SHB	Crosses	Entries
		F1 single crosses	997	470	470
		F ₂	572	413	413 SHB
		F ₃	158	82	82 SHB
					69 SHB
		F_4	135	69	09 SHD
			135 170	69 82	1640 SHB

3.TITLE	HYBRID SEED PRODUCTION.
OBJECTIVES	To develop wheat hybrids
RESEARCH WORKER (S)	SaimaGulnaz, Muhammad Zulkiffal and Dr. Javed Ahmad
PROJECT DURATION	2013-14 (continuous nature)
LOCATION	Wheat Research Institute, Faisalabad.
TREATMENTS & METHODOLOGY	CMS lines (A-lines): Thirty three A-lines (CMS lines) along with the same number of B-lines (Maintainers) will be planted in the field. A-lines will be maintained by pollinating with its corresponding B-lines.
	Fertility restorer Lines (R-lines): Sixteen lines with fertility restorer gene (Rf) will also be maintained.

PREVIOUS YEAR'S	Thirty three CMS lines were maintained by crossing with their
RESULTS	respective maintainer (B) lines. Sixteen fertility restorers were also
	maintained by selfing. Three male restorer lines were crossed with ten
	CMS lines developed in local variety.

4. TITLE	STUDY OF DROUGHT FILIAL GENERATIONS (DRF ₁ - DRF ₇) OF BREAD WHEAT	
OBJECTIVES	 i. To develop the crosses and evaluate filial generations in drought stress condition. ii. Selection of single plants resistant to diseases, vigorous planttype and physiologically drought stress tolerant plants in DRF₂. DRF₄ generations using selected bulk method. iii. Selection of desirable single heads and its progenies insuccessive generations (DRF₅ & DRF₆). iv. Selection of uniform, vigorous advanced lines (single head row progenies) resistant to diseases and efficient to drought stress tolerance in DRF₇ generation for grain yield testing in moisture stressed preliminary yield trials. 	
RESEARCH WORKER (S)	Dr. Muhammad Akbar, Dr. Javed Ahmad and Dr. MakhdoomHussain	
PROJECT DURATION	2014-15 (Continuous nature)	
LOCATION	Wheat Research Institute, Faisalabad.	
TREATMENTS & METHODOLOGY	DRF ₁ generation will be planted in irrigated conditions so that sufficient seed may be produced from F_1 generation and resistance of each entry against diseases may be precisely observed. DRF ₂ to DRF ₇ will be planted in rainfed condition and these generations will be exposed to artificial epidemic rusts condition also. Epidemic rusts condition will be created by spreading dust of rusts spores.Plants infected with rusts (in pots) will be kept in spreader rows planted around the field. Water will also be sprayed for increasing humidity to favor the germination of spores. On spread of rusts, good and resistant plants will be selected and selected bulk method will be used for generation advancement. Drought tolerant, Uniform maturity of tillers, plant height, lodging resistance, and free from grain diseases will be selected. The material will be planted with the following specifications during first fortnight of November, 2014 and fertilized @120:90:60: N:P:K kg ha ⁻¹ at sowing time.	

	Generations	No. of crosses	Entries	Plot size
	F1 single crosse	s 252	252	1 row x 2.5m
	DRF ₂	153	153	6 rows×8m
	DRF ₃	67	67	3 rows ×3m
	DRF ₄	36	36 SHB	3 rows×3m
	DRF ₅	69	69 SHB	3 rows×3m
	DRF ₆	71	620 SHR	$1 \text{ row} \times 2.5 \text{m}$
	DRF ₇	06	97 SHRP	4 rows ×4m
	SHB= Single head bulk, SHR=Single head rows and SHRP=Single head row progeny/line			
	neuu ion progen	<i>y,</i>		
PREVIOUS YEAR'S				
RESULT	Generation	Studied crosses/	Entries selected	
		SHB	Crosses/	Crosses/ entries
			entries	
	DRF_0	252 fresh crosses	252 fresh	252
		developed	crosses	
	DRF1	200	153	153
	DRF ₂	69 SHB	67	67 SHB
	DRF ₃	42 SHB	36	36 SHB
	DRF ₄	76 SHB	69	69 SHB
	DRF ₅	97 SHB	71	620 SH
	DRF ₆	265SHR	6	97 SHR
	DRF ₇	127 SHRP 20	28 lines of	28 lines of 17
			17 crosses	crosses for rainfed
		crosses	17 0108808	PYT
	U	crosses ead bulk; SHR=Single ds, SHRP=Single head	head rows,	

5. TITLE	WHEAT BREEDING FOR DURABLE RUST RESISTANCE.
OBJECTIVES	To develop wheat germplasm having durable rust resistance based on minor genes like Sr 2, Lr 34, Lr 46 and other minor genes
RESEARCH WORKER (S)	SadiaAjmal, Sabina Asghar, Faqir Muhammad, Dr. MakhdoomHussain
PROJECT DURATION	2014-15(continuous nature)
LOCATION	Wheat Research Institute, Faisalabad.
TREATMENTS & METHODOLOGY	About 100 fresh crosses will be attempted. F_1 crosses will be sown in 2.5 meter row. Single heads collected from F_5 will be sown as head rows in F_6 generation. F_6 of durable rust will be sown in a plot size of 1x1.25m. The F_7 material will be evaluated for yield in a plot size of 4x 4 m.

		S. #	Gene Cros	erations/ ses	Crosses/plants	
		1	Fresh	n crosses	100	
		2	F_1		120	
		3	F ₆		54/671	
		4	F ₇		27/77	
	Selection v	will be do	one on	the basis of pla	ant type visual ob	servation and
	disease res	istance.				
PREVIOUS YEAR'S						
RESULT	6	Generatio	ons	Entries teste	d Entries selec	ted
	F	Fresh cros	sses	-	120	
	F	5		102	54/671	
	F	6		44/357	27/77	
	F	7		30/81	13/28	

6. TITLE	EVALUATION OF ADVANCED LINES/VARIETIES OF WHEAT FOR DROUGHT TOLERANCE
OBJECTIVES	To evaluate advanced lines/varieties suitable for rainfed/water stressed areas.
RESEARCH WORKER (S)	Dr. Muhammad Akbar, Dr. Javed Ahmad and Dr. MakhdoomHussain
PROJECT DURATION	2014-15 (2 nd year)
LOCATION	Wheat Research Institute, Faisalabad.
TREATMENTS & METHODOLOGY	Ten advanced lines/varieties of bread wheat viz; V-11183, V-08173, V-09082, V-09087, V-08203, Galaxy-13, Chakwal-50, Faisalabad-08, Punjab-11, Millat-11 will be sown in triplicate in three sets during 2^{nd} week of November, 2014 keeping plot size of (5×1.68) m ² for each entry according to split plot. One set in rainfed, 2^{nd} in irrigated conditions and 3^{rd} with one irrigation at reproductive stags on the same date with same agronomic practices except irrigation. Canopy temperature (CT), days to 50% heading, days to 50% maturity, plant height, and chlorophyll content with NDVI, grains per spike, 1000-grain weight and grain yield will be recorded. Finally, lines will be evaluated considering traits recorded.
PREVIOUS YEAR'S RESULT	Ten advanced lines/varieties of bread wheat viz; V-11183, V-08173, V-09082, V-09087, V-08203, Galaxy-13, Chakwal-50, Faisalabad-08, Punjab-11, Millat-11 were accessed in triplicate at three levels of irrigation.Galaxy-13 and V-11183 ranked first in grain yield and 1000 grain weight followed by V-18173. V-18173 ranked 2 nd in lesser flag leaf area, highest number of tillers per plant, maximum in 1000 grain weight and grain yield per hectare.

7.TITLE	STUDY OF ADVANCED LINES OF WHEAT FOR LODGING TOLERANCE AT GRAIN FILLING STAGE.
OBJECTIVES	To evaluate advanced lines/ varieties for lodging tolerance.
RESEARCH WORKER (S)	Dr. Muhammad Akbar, Abdullah, Dr. Javed Ahmad, Dr. MakhdoomHussain and Muhammad Tariq.
PROJECT DURATION	2014-15 (2 nd year)
LOCATION	Wheat Research Institute, Faisalabad.
TREATMENTS & METHODOLOGY	Ten advanced lines/varieties of bread wheat viz; V-11183, V-08173, V-09082, V-09087, V-08203, Galaxy-13, Chakwal-50, Faisalabad-08, Punjab-11, Millat-11will be sown under two treatments (T1= unlodged and T2 = lodged) in triplicate 1 st . fortnight of November, 2014 keeping net plot size $5 \times 1.68 \text{ m}^2$ for each entry following split plot design. Entries of Treatment-2 will be lodged manually at grain filling stage next day of 3 rd irrigation. Grain yield and 1000- grain weight will be recorded and their reduction % will be calculated to access drought tolerance.
PREVIOUS YEAR'S RESULTS	Ten advanced lines/varieties of bread wheat viz; V-11183, V-08173, V-09082, V-09087, V-08203, Galaxy-13, CK-50, Faisalabad-08, Punjab-11, Millat-11were accessed in un-lodged and lodged conditions.Galaxy-13 showed highest potential in mean grain yield (4560 kgha ⁻¹ .V-11183 stood 2 nd in grain yield (4316 kgha ⁻¹). However, Punjab-11 ranked third in grain yield (3921kgha ⁻¹).

8. TITLE	BREEDING FOR HEAT TOLERANCE
OBJECTIVES	To develop crosses and evaluate the generations under heat stress conditions.
RESEARCH WORKER (S)	AneelaAhsan and Dr. MakhdoomHussain
PROJECT DURATION	2014-15
LOCATION	Wheat Research Institute, Faisalabad.
TREATMENTS & METHODOLOGY	About 200 fresh crosses for heat tolerance will be attempted. F_1 crosses will be sown in 2.5meter row. F_2 will be sown as 3.6 x 6m ² , F_3 , F_4 & F_5 as1.8x6m ² during December. Plot size of F_6 will be 1 x 2.5m. Observations regarding disease incidence and plant type will be recorded. At maturity, single heads from desirable plants of F_2 , F_3 & F_4 will be bulked to raise next generation. While the desirable heads from F_5 will be selected to for head to rows in F_6 generation. Selected lines from F_6 will be promoted to F_7 generation.

		Sr. #	Generations/Cro	osses	Entries	
		1	Fresh Crosse	es	200	
		2	F ₁		238	
		3	F ₂		101	
		4	F ₃		67	
		5	F_4		28	
		6	F ₅		21	
		7	F ₆		20/509	
				Si	ngle head	
PREVIOUS VEAR'S					ingle neud	
PREVIOUS YEAR'S RESULTS	Sr. #	Gener	rations/Crosses	Entries	Entries Se	lected
				Entries Studied		lected
	1		rations/Crosses	Entries Studied 238	Entries Sel	lected
				Entries Studied		lected
	1		Fresh Crosses	Entries Studied 238	Entries Sel	lected
	1 2		Fresh Crosses	Entries Studied 238 194	Entries Se - 101	lected
	1 2 3		$ Fresh Crosses F_1 F_2 $	Entries Studied 238 194 141	Entries Sel - 101 67	lected
	1 2 3 4		F_1 F_2 F_3	Entries Studied 238 194 141 64	Entries Sel - 101 67 28	

9. TITLE	EVALUATION OF BREAD WHEAT GERMPLASM FOR POST- ANTHESIS HEAT STRESS
OBJECTIVES	To evaluate the bread wheat germplasm for yield and yield components under post-anthesis heat stress conditions.
RESEARCH WORKER (S)	AneelaAhsan and Dr. MakhdoomHussain
PROJECT DURATION	2014-15
LOCATION	Wheat Research Institute, Faisalabad.
TREATMENTS & METHODOLOGY	Fifty bread wheat germplasm entries having similar time of anthesis will be sown as two rows of three meter length following RCB design. The material will be sown in and outside the tunnel during the 2 nd week of December. Post anthesis heat shock will be induced by covering the tunnel with the plastic sheet for about three weeks. Data regarding days to heading, canopy temperature, plant height, days to maturity, rust reactions, No. of grains/spike, 1000- grain weight and grain yield/meter row will be recorded.
PREVIOUS YEAR'S RESULTS	Following seven lines performed better on the basis of yield and 1000 grain weight under heat stress conditions:

Sr #	Genotype		eld ha ⁻¹)	1000 Gra (ی	in weight g)
		Normal	Stress	Normal	Stress
1	V-11138	4722	4022	54.2	52.1
2	V-12265	4855	2821	46.5	49.5
3	V-12275	4755	3034	44.2	42.3
4	V-11046	4602	3288	49.7	48.7
5	V-11365	4655	2834	49.7	45.1
6	WHEAR/TUKURU/ /WHEAR	4535	3001	43.8	41.7
7	KIRITATI// SERI/RAYON	4689	2154	47.9	44.1

10.TITLE	SCREENING OF BREAD WHEAT GERMPLASM FOR HEAT TOLERANCE UNDER LATE SOWN CONDITIONS.
OBJECTIVES	Screening and testing of bread wheat lines for heat tolerance
RESEARCH WORKER (S)	AneelaAhsan, MajidNadeem, Dr. Javed Ahmad and Dr. MakhdoomHussain
PROJECT DURATION	2014-15
LOCATION	Wheat Research Institute, Faisalabad.
TREATMENTS & METHODOLOGY	Entries: = 100 lines (National & International sources) Plot size: = 6 rows x 5m Sowing time: = Dec. 2014 Design: =Augmented (Five Blocks) Check varieties: Fsd-08, Millat-11, Pb-11, Lasani-08 and Seher-06 Days to heading, canopy temperature ,chlorophyll contents, plant height, yield (kg ha ⁻¹), days to maturity, 1000-grain weight will be recorded.

(No			Norma		
	Entry	Yield		ai 6 increase ov	er
	#	(kg ha^{-1})	Fsd-08	Millat-11	Punjab-11
	43	6401	16.8	40.1	41.7
	40	6321	15.3	38.4	39.9
	44	6308	15.1	38.1	39.6
	164	6018	9.8	31.8	33.2
	35	5987	9.2	31.1	32.5
			Late		
	Entry	Yield		6 increase ov	er
	#	$(kg ha^{-1})$		Millat-11	Punjab-11
	26	4827	14.2	21.8	26.1
	54	4697	11.1	18.5	22.7
	122	4629	9.5	16.8	21.0
	133	4029	9.5	10.0	21.0
	135	4629	8.0	15.3	19.4
Par	136 38	4568 4537	8.0 7.3	15.3 14.5	19.4 18.6
Rar	136 38	4568 4537 aracters (in n t Charact	8.0 7.3 formal trials)	15.3 14.5 is given below Range	19.4 18.6
Rar	136 38 nge for cha Sr. # 1	4568 4537 aracters (in n Character Days to h	8.0 7.3 formal trials) er neading	15.3 14.5 is given below Range 89-106	19.4 18.6 v:
Rar	$ \begin{array}{r} 136\\ 38\\ \hline 38\\ \hline nge for chance in the second se$	4568 4537 aracters (in n Character Days to h Plant hei	8.0 7.3 formal trials) er neading ght	15.3 14.5 is given below Range 89-106 95-130cm	19.4 18.6 v:
Rar	136 38 nge for chain in the second seco	4568 4537 aracters (in n t Charact Days to h Plant hei Leaf rust	8.0 7.3 formal trials) er neading ght reaction	15.3 14.5 is given below Range 89-106 95-130cm 0- 60 S	19.4 18.6 v:
Rar	$ \begin{array}{r} 136 \\ 38 \\ \end{array} $ nge for cha	4568 4537 aracters (in n Character Days to h Plant hei Leaf rust Yellow r	8.0 7.3 formal trials) er neading ght reaction ust reaction	15.3 14.5 is given below Range 89-106 95-130cm 0- 60 S 0-50 MRM	19.4 18.6 v: 18
Rar	$ \begin{array}{r} 136 \\ 38 \\ \end{array} $ nge for cha $ \begin{array}{r} \overline{Sr. \#} \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ \end{array} $	4568 4537 aracters (in n Charact Days to h Plant hei Leaf rust Yellow r 1000 gra	8.0 7.3 formal trials) er neading ght reaction ust reaction in weight	15.3 14.5 is given below Range 89-106 95-130cm 0- 60 S 0-50 MRN 26.6-43.5	19.4 18.6 v: 4S g
Rar	$ \begin{array}{r} 136 \\ 38 \\ \end{array} $ nge for cha	4568 4537 aracters (in n Character Days to h Plant hei Leaf rust Yellow r	8.0 7.3 formal trials) er neading ght reaction ust reaction in weight	15.3 14.5 is given below Range 89-106 95-130cm 0- 60 S 0-50 MRM	19.4 18.6 v: 4S g
	$ \begin{array}{r} 136 \\ 38 \\ 38 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ \end{array} $	4568 4537 aracters (in n Characters Days to h Plant hei Leaf rust Yellow r 1000 gra Grain yie	8.0 7.3 formal trials) er neading ght reaction ust reaction in weight	15.3 14.5 is given below Range 89-106 95-130cm 0- 60 S 0-50 MRN 26.6-43.5 2543-6555	19.4 18.6 v: 4S g
	$ \begin{array}{r} 136 \\ 38 \\ 38 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ \end{array} $	4568 4537 aracters (in n Charact Days to h Plant hei Leaf rust Yellow r 1000 gra Grain yie aracters (in la Character	8.0 7.3 formal trials) er neading ght reaction ust reaction in weight eld ate trials) is g	15.3 14.5 is given below Range 89-106 95-130cm 0- 60 S 0-50 MRM 26.6-43.5 given below: given below:	19.4 18.6 v: 4S g
	136 38 ange for chains and the second s	4568 4537 aracters (in n Character Days to h Plant hei Leaf rust Yellow r 1000 gra Grain yie aracters (in la Character Days to he	8.0 7.3 formal trials) er neading ght reaction in weight eld ate trials) is g	15.3 14.5 is given below Range 89-106 95-130cm 0- 60 S 0-50 MRM 26.6-43.5 given below: given below: Range 76-87	19.4 18.6 v: 18 18 g 5 kgha ⁻¹
	$ \begin{array}{r} 136 \\ 38 \\ 38 \\ 12 \\ 3 \\ 4 \\ 5 \\ 6 \\ 12 \\ 3 \\ 4 \\ 5 \\ 6 \\ 12 \\ 2 \\ 12 \\ 2 \\ 12 \\ 2 \\ 12 \\ 2 \\ 12 \\ 2 \\ 12 \\ 2 \\ 12 \\ 2 \\ 12 \\ 2 \\ 12 \\ 12 \\ 2 \\ 12 \\ $	4568 4537 aracters (in n E Character Days to h Plant hei Leaf rust Yellow r 1000 gra Grain yie aracters (in h Character Days to he Plant height	8.0 7.3 formal trials) er neading ght reaction ust reaction in weight eld ate trials) is g r eading ht	15.3 14.5 is given below Range 89-106 95-130cm 0- 60 S 0-50 MRN 26.6-43.5 given below: given below: Range 76-87 80-109cr	19.4 18.6 v: 18 18 g 5 kgha ⁻¹
	$ \begin{array}{r} 136 \\ 38 \\ 38 \\ 38 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 3 \\ 1 \\ 2 \\ 3 \\ 3 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 3 \\ 3 \\ 5 \\ 6 \\ 5 \\ 7 \\$	45684537aracters (in nECharactDays to hPlant heiLeaf rustYellow r1000 graGrain yiearacters (in hCharacterDays to hePlant heigLeaf rust r	8.0 7.3 formal trials) er neading ght reaction ust reaction in weight eld ate trials) is g r eading ht eading	15.3 14.5 is given below Range 89-106 95-130cm 0-60 S 0-50 MRM 26.6-43.5 2543-6555 given below: Range 76-87 80-109cr 0-70 S	19.4 18.6 v: 18.6 ds s kgha ⁻¹
	136 38 nge for change for change 3136 3136 3136 3136 4126 5166 5166 51666 516666 $51666666666666666666666666666666666666$	4568 4537 aracters (in n E Character Days to h Plant hei Leaf rust Yellow r 1000 gra Grain yie aracters (in la Character Days to he Plant heig Leaf rust r Yellow rust	8.0 7.3 formal trials) er neading ght reaction ust reaction in weight eld ate trials) is g r eading ht eaction st reaction	15.3 14.5 is given below Range 89-106 95-130cm 0-60 S 0-50 MRN 26.6-43.5 2543-6555 given below: Range 76-87 80-109cr 0-70 S 0-40 MR	19.4 18.6 v: <u>4S</u> g 5 kgha ⁻¹ m MS
	$ \begin{array}{r} 136 \\ 38 \\ 38 \\ 38 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 3 \\ 1 \\ 2 \\ 3 \\ 3 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 3 \\ 3 \\ 5 \\ 6 \\ 5 \\ 7 \\$	45684537aracters (in nECharactDays to hPlant heiLeaf rustYellow r1000 graGrain yiearacters (in hCharacterDays to hePlant heigLeaf rust r	8.0 7.3 formal trials) er neading ght reaction ust reaction in weight eld ate trials) is g r eading ht eaction st reaction	15.3 14.5 is given below Range 89-106 95-130cm 0- 60 S 0-50 MRN 26.6-43.5 2543-6555 given below: Range 76-87 80-109cr 0-70 S 0-40 MR 22.3-45.3	19.4 18.6 v: <u>4S</u> g 5 kgha ⁻¹ m MS

11.TITLE	RAPID DEVELOPMENT OF CLIMATE RESILIENT WHEAT VARIETIES FOR SOUTH ASIA
OBJECTIVES	To evaluate CIMMYT candidate lines under local climatic conditions.
RESEARCH	MuhammdZulkiffal, MajidNadeem, Dr. Javed Ahmad, Dr.
WORKER (S)	MakhdoomHussain, Dr. MuhammadImtiaz and Muhammad Noor
PROJECT	2014-15
DURATION	
LOCATION	Wheat Research Institute, Faisalabad.
TREATMENTS &	About 1000 candidate lines are expected to receive from CIMMYT
METHODOLOGY	which will be sown according to the instructions supplied by
	CIMMYT
PREVIOUS YEAR'S RESULTS	One hundred and fifty four (154) promising lines were selected from candidate lines received from CIMMYT for further study.

12.TITLE			ATION OF CIMMY WN CONDITIONS.	Γ MATERIAL IN Ν	ORMAL	
OBJECTIVES	To find o	out mater	rial having terminal hea	t tolerance ability		
RESEARCH WORKER (S)	•	MajidNadeem, MuhammadZulkiffal, Dr. Javed Ahmad, Dr. MakhdoomHussain, Dr. Muhammad Imtiaz and Muhammad Noor				
PROJECT DURATION	2014-15					
LOCATION	Wheat R	esearch	Institute, Faisalabad.			
TREATMENTS & METHODOLOGY	expected	to recei	dred and fifty (450) ive from CIMMYT wh upplied by CIMMYT		,	
PREVIOUS YEAR'S RESULTS:	5000 kg	ha ⁻¹ and i	one hundred and one in late trials ninety two ge for characters (in nor	(92) lines gave yield n	nore than	
		Sr. #	Character	Range		
		1	Days to heading	89-101	1	
		2	Plant height	88-123cm		
		3	Leaf rust reaction	0- 100 S	1	
		4	Yellow rust reaction	0-100 S		
		5	1000 grain weight	21.2-50.1 g]	
		6	Grain yield	2628-6363 kgha ⁻¹		

Sr. #	Character	Range
1	Days to heading	72-84
2	Plant height	77-104cm
3	Leaf rust reaction	0- 80 S
4	Yellow rust reaction	0-60 MRMS
5	1000 grain weight	20.1-49.9 g
6	Grain yield	2083-5034 kg ha ⁻¹

13.TITLE	EVALUATION OF INTERNATIONAL BREAD WHEATMATERIAL(CIMMYT / ICARDA).							
OBJECTIVES	To evaluate and select promising lines from CIMMYT / ICARDA materials for strengthening bread wheat germplasm and testing in station yield trials (A and B).							
RESEARCH	Muhammad Ijaz, Javed Anwar, Dr. Javed Ahmad, AneelaAhsan, Dr							
WORKER (S)	Muhammad Ijaz, Javed Anwar, Dr. Javed Anmad, AneelaAnsan, Dr Muhammad Akbar, Faqir Muhammad, Dr. MakhdoomHussainSherBaz Khan and Muhammad HammadTanveer							
PROJECT DURATION	2014-15 (Co	ontinuous)						
LOCATION	Wheat Rese	arch Institute, Faisalabad.						
TREATMENTS &	The following yield trials/nurseries are expected, which will be laid							
METHODOLOGY			plied by the donor agencies					
		ICARDA& NARC):						
	Sr. #	Trials/ Nurseries	Source					
	1	35 th ESWYT	CIMMYT					
	2	22 nd SAWYT	CIMMYT					
	3	9 th EBWYT	CIMMYT					
	4	9 th HTWSN	CIMMYT					
	5	3 rd WYCYT	CIMMYT					
	6	WPEPYT	CIMMYT					
	7	4 th HPYT	CIMMYT					
	8	4 th SATYN	CIMMYT					
	9	32 nd SAWSN	CIMMYT					
	10	6 th CSISA	CIMMYT					
	11	46 th IBWSN	CIMMYT					
	12	8 th Stem RRSN	CIMMYT					
	13	23 rd ISPTON	CIMMYT					
	14	15 th SSR-FA/IR SBWYT	CIMMYT/ICARDA					
	15	15 th DSBWYT	CIMMYT/ICARDA					
	16	NARC HPRYT	NARC					

PREVIOUS YEAR'S RESULTS	trials and nu breeding nurs	promising lines, 180 w urseries for testing ir sery. The detail is give	n yield trials a en below:	and inclusion in p	
	Sr. #	Name of Trial		ntries	
			Studied	Selected	
	1	34 ESWYT	50	22	
	2	21 SAWYT	50	17	
	3	8 EBWYT	30	9	
	4	2 WYCYT	42	7	
	5	WPEPYT	25	6	
	6	4 th HPYT	50	6	
	7	NARC HPRYT	25	6	
	8	8 th HTWSN	121	12	
	9	3 rd SATYN	24	03	
	10	31 st SAWSN	219	35	
	11	5 th CSISA	30	08	
	12	46 th IBWSN	329	26	
	13	8 th Stem RRSN	200	16	
	14	23 rd ISPTON	52	7	
	Total		1247	180	

14.TITLE	PRELIMINARY WHEAT YIELD TRIALS (A-TRIALS)
OBJECTIVES	To evaluate the genotypes for yield and other agronomic parameters under irrigated and rainfed conditions.
RESEARCH WORKER (S)	Muhammad Owais, MuhammadIjaz, Dr. Javed Ahmadand Dr. MakhdoomHussain
PROJECT DURATION	2014-15 (Continuous)
LOCATION	Wheat Research Institute, Faisalabad.
TREATMENTS & METHODOLOGY	????- bread wheat lines will be tested in preliminary yield trials under irrigated conditions including three check varieties (Faisalabad-08, Punjab-11and Galaxy-13) while fifty bread wheat lines will be tested in rainfed conditions trials including three check varieties (Faisalabad -08, Chakwal-50 and Dharabi-13) Trials will be laid out according to alpha lattice with three replications. The most promising lines will be selected on the basis of desirable economic traits to strengthen the regular yield trials (B-Trials).

		e results are en		
Variety Code	Yield (kg ha ⁻¹)	Percenta	ge Increase o varieties	ver check
A-I		Punjab-11	FSD-08	Millat-11
V-13059	4681	32.9	42.7	54.2
V-13074	4676	32.8	42.6	54.1
V-13058	4092	16.2	24.8	34.8
V-13057	4057	15.2	23.7	33.7
V-13072	3970	12.7	21.1	30.8
V-13068	3958	12.4	20.7	30.4
V-13061	3889	10.4	18.6	28.1
LSD (0.05)	225	1011	10.0	2011
CV (%)	3.78			
A-III	0110			
		Millat-11	FSD-08	Punjab-1
V-13113	4851	9.1	15.4	26.5
V-13112	4762	7.1	13.3	24.2
V-13105	4757	7.0	13.2	24.1
V-13104	4744	6.7	12.8	23.7
V-13108	4715	6.1	12.2	22.9
V-13117	4667	5.0	11.0	21.7
V-13101	4605	3.6	9.5	20.1
V-13122	4557	2.5	8.4	18.8
LSD (0.05)				
CV (%)	3.32			
A-IV				
		Millat-11	Punjab-11	FSD-08
V-13123	5108	24.3	31.6	40.4
V-13140	4990	21.4	28.5	37.1
V-13144	4769	16.0	22.9	31.1
V-13136	4537	10.4	16.9	24.7
V-13134	4225	2.8	8.8	16.1
V-13137	4191	2.0	8.0	15.2
V-13124	4147	0.9	6.8	14.0
LSD (0.05) CV (%)	<u> </u>			

		Punjab-11	FSD-08	Milla
V-13167	5180	9.3	24.4	25
V-13158	4975	4.9	19.5	20.
V-13152	4891	3.2	17.5	18.
V-13147	4780	0.8	14.8	16.
V-13164	4758	0.4	14.3	15.
LSD (0.05)	204			
CV (%)	2.93			
A-VI				
		FSD-08	Millat-11	Punja
V-13192	5691	32.7	33.6	51.
V-13190	4822	12.4	13.2	28.
V-13194	4636	8.1	8.9	23.
LSD (0.05)	220			
CV (%)	3.47			
A-I (Rainfed	l)			
		FSD-08	CK-50	BARS
V-13310	5559	10.58	44.58	38.3
V-13318	5376	6.94	40.58	33.7
V-13311	5231	40.05	36.87	30.1
V-13316	5228	3.99	36.71	30.1
V-13315	5029	.039	31.51	25.1
LSD (0.05)	355.12			
CV (%)	3.84			
A-II Rainfe	d			
		FSD-08	CK-50	BARS
V-13338	5644	7.85	18.34	58.1
V-13325	5540	5.86	16.16	55.6
V-13340	5461	4.35	14.51	53.4
V-13329	5373	2.67	12.66	50.9
V-13324	5238	.095	9.83	47.1
LSD (0.05)	310.82			
CV (%)	3.24			
A-III Rainf	ed			-
		FSD-08	CK-50	BARS
V-13348	5400	0.48	27.78	44.5
LSD (0.05)	223.78			
CV (%)	2.93			

15.TITLE	REGULAR WHEAT YIELD TRIALS (B-TRIALS)
OBJECTIVES	To evaluate the promising lines ofbread wheat selected from preliminary yield trialsfor yield and other agronomic parameters under irrigated and rainfed conditions.
RESEARCH	Dr. Javed Ahmad, Muhammad Owais, MuhammadIjaz and
WORKER (S)	Dr. MakhdoomHussain
PROJECT DURATION	2014-15 (Continuous)
LOCATION	Wheat Research Institute, Faisalabad.
TREATMENTS & METHODOLOGY	????- bread wheat lines will be tested in regular yield trials under irrigated conditions including three check varieties (Faisalabad-08, Millat-11 and Galaxy-13). Four advance lines in MTWV (under rainfed condition) will be tested against check varieties (Faisalabad-08, Chakwal-50 and Dharabi-11). Trials will be laid out according to alpha lattice with three replications. The most promising lines will be promotedin MTWVon the basis of desirable economic traits.

PREVIOUS YEAR'S RESULTS	advanced line checks. Four yielding than t The yield perf varieties are as	s of bread w advanced lin hree checks (formance of h s under:	es (rainfed co Faisalabad-08, igh yielding lin	nd high yieldi ndition) were Chakwal-50 a nes compared	ng than three found higher nd BARS-09). to three check	
	Variety	Yield	Percentage Increase over check			
	Code (kg ha ⁻¹) varieties					
	B-I (Normal)	1	1		
		1	Millat-11	Lasani-08	FSD-08	
	V-12056	5277	28.8	34.3	46.1	
	V-12057	5154	25.8	31.2	42.7	
	V-12053	5121	25.0	30.4	41.8	
	V-12058	5039	23.0	28.2	39.5	
	V-12022	4841	18.2	23.2	34.1	
	V-12054	4817	17.6	22.6	33.4	
	LSD (0.05)	253				
	CV (%)	3.67				
	B-II (Normal)					
		1	Lasani-08	Millat-11	FSD-08	
	V-13244	4470	15.1	15.8	21.6	
	V-12112	4216	8.5	9.2	14.7	
	V-13245	4068	4.7	5.4	10.7	
	V-13252	4063	4.6	5.2	10.6	
	V-13262	3979	2.4	3.1	8.3	
	LSD (0.05)	189				
	CV (%)	3.29				

Variety Code	Yield (kg ha ⁻¹)	Percenta	ge Increase o varieties	ver check
B-III				
		Millat-11	FSD-08	Lasani-08
V-12035	5317	28.7	36.2	41.6
V-12027	4883	18.1	25.1	30.1
V-12059	4796	16.0	22.9	27.8
V-12066	4731	14.5	21.2	26.0
V-12037	4712	14.0	20.7	25.5
V-12032	4554	10.2	16.7	21.3
V-12103	4554	10.2	16.6	21.3
LSD (0.05)	226	_		
CV (%)	3.32			
B-V			<u></u>	
		FSD-08	Millat-11	Lasani-08
V-13273	4660	6.8	26.7	37.1
LSD (0.05)	246			
CV (%)	3.94			
B-I (Short D		<u> </u>	<u> </u>	
(FSD-08	Lasani-08	Millat-11
V-12130	5581	7.3	12.3	18.9
V-12056	5438	4.5	9.4	15.8
V-12118	5330	2.4	7.3	13.5
V-12022	5235	0.6	5.3	11.5
LSD (0.05)	221			
CV (%)	2.70			
B-II (Short I			<u></u>	
(====		Lasani-08	FSD-08	Millat-11
V-13244	5704	11.4	12.2	17.9
V-13255	5512	7.7	8.4	14.0
V-13258	5404	5.6	6.3	11.7
V-12112	5401	5.5	6.2	11.7
V-13248	5363	4.8	5.5	10.9
LSD (0.05)	180			
CV (%)	2.22			
B-IRainfed		1	1	<u> </u>
		FSD-08	CK-50	BARS-09
V-13371	5954	11.45	50.54	59.45
V-13372	5749	7.61	45.36	53.96
V-12213	5447	1.96	37.72	45.87
V-12234	5372	0.56	35.82	43.86
	318.34	0.00		.2.00
LSD (0.05)		1	1	1

16. TITLE	MICRO WHEAT Y	IELD TR	RIAL (MWY	Г).	MICRO WHEAT YIELD TRIAL (MWYT).						
OBJECTIVES	To assess the yield performance and adaptability of promising lines at Govt. farms in different ecological zones of the Punjab.										
RESEARCH WORKER (S)	Dr.MakhdoomHussain, Dr. Muhammad Munir, Abdullah MuhammadIjaz and Muhammad Tariq										
PROJECT DURATION	2014-15 (Continuous)										
LOCATIONS	Wheat Research Insti Punjab.	tute, Fais	alabad and al	most in all dist	ricts of the						
METHODOLOGY	Govt. farms. All the w of Agriculture; NIBG and Private Seed Con trial will be conducted Set of trial	E, NIAB npanies v l as per de No. of	, Faisalabad; will contribute etails given be No. of	NARC, CDRP, e the promising	Islamabad lines. The						
	Normal duration	trials	entries 30	2 nd week of							
		_	30		Nov						
	Short duration	25	30	2 nd & 3 rd week							

RESULTS		· · · /1	• • • • • • • •	• 11	dan
	2013.	The varieties/I		yield are as un	uer
				Duration	
	Va	riety/line	Yield	% inc	rease over
			(kgha ⁻¹)	Punjab-11	Faisalabad-08
	V-	12304	4183	10.02	4.39
	V-	11098	4104	7.94	2.42
	V-	11138	4088	7.52	2.02
	V-	12266	4050	6.53	1.07
	Thirty	entries includ	ling two check	varieties, i.e. l	Millat-11 and Lasa
					rtnight of Decemb
	2013.	The varieties/l		yield are as un	der:
				Duration	
		Variety/line	Yield		crease over
			(kgha ⁻¹)	Millat-11	Lasani-08
	_	V-11138	3789	9.73	7.09
		V-12304	3788	9.70	7.07
		V-12304 NR-411	3788 3613	9.70 4.63	7.07 2.12
		V-12304 NR-411 V-11046 y five entries	3788 3613 3564 s including tv	9.70 4.63 3.22 vo check varie	7.07 2.12 0.74 eties i.e. CK-50 a
	Dharal condit	V-12304 NR-411 V-11046 y five entries bi-11were pla ions. Followin ced higher grain Variety Code	378836133564s including twanted at sixng varieties ofin yield:Yield (kg ha)	9.70 4.63 3.22 vo check varie locations un wheat research	7.07 2.12 0.74
	Dharal condit	V-12304 NR-411 V-11046 y five entries bi-11were pla ions. Followin ced higher grain Variety Code MTWV (Ra	3788 3613 3564 s including tw anted at six ng varieties of in yield: Yield (kg ha infed)	9.70 4.63 3.22 vo check varie locations un wheat research -1) Percentag over chec	7.07 2.12 0.74 eties i.e. CK-50 a der moisture str h institute Faisalal ge Increase k varieties
	Dharal condit	V-12304 NR-411 V-11046 y five entries bi-11were pla ions. Followin ced higher grain Variety Code MTWV (Ra	3788 3613 3564 s including tw anted at six ng varieties of in yield: Yield (kg ha infed)	9.70 4.63 3.22 vo check varie locations un wheat research	7.07 2.12 0.74 eties i.e. CK-50 a der moisture str h institute Faisalal ge Increase k varieties
	Dharal condit	V-12304 NR-411 V-11046 y five entries bi-11were pla ions. Followin ced higher grain Variety Code MTWV (Ra	3788 3613 3564 s including tw anted at six ng varieties of in yield: Yield (kg ha infed)	9.70 4.63 3.22 vo check varie locations un wheat research -1) Percentag over chec	7.07 2.12 0.74 eties i.e. CK-50 a der moisture str h institute Faisalal ge Increase k varieties
	Dharal condit	V-12304 NR-411 V-11046 y five entries bi-11were pla ions. Followin ced higher grain Variety Code MTWV (Ra Variety/line V-12253 V-12252	378836133564s including tvanted at sixng varieties ofin yield:Yield (kg hainfed)Yield (kg ha ⁻ 41903959	9.70 4.63 3.22 vo check varie locations un wheat research ⁻¹) Percentag over chece ¹) Dharabi-1 3.13 -2.56	7.072.120.74eties i.e. CK-50 ader moisture strh institute Faisalabge Increasek varieties1CK-504.93-0.85
	Dharal condit	V-12304 NR-411 V-11046 y five entries bi-11were pla ions. Followin ced higher grain Variety Code MTWV (Ra Variety/line V-12253 V-12252 V-11101	378836133564s including twanted at sixng varieties ofin yield:Yield (kg hainfed)Yield (kg ha419039593915	9.70 4.63 3.22 vo check varie locations un wheat research ⁻¹) Percentag over chece ¹) Dharabi-1 3.13	7.072.120.74eties i.e. CK-50 ader moisture strh institute Faisalabge Increasek varieties1CK-504.93
	Dharal condit	V-12304 NR-411 V-11046 y five entries bi-11were pla ions. Followin ced higher grain Variety Code MTWV (Ra Variety/line V-12253 V-12252	378836133564s including tvanted at sixng varieties ofin yield:Yield (kg hainfed)Yield (kg ha ⁻ 41903959	9.70 4.63 3.22 vo check varie locations un wheat research ⁻¹) Percentag over chece ¹) Dharabi-1 3.13 -2.56	7.072.120.74eties i.e. CK-50 ader moisture strh institute Faisalabge Increasek varieties1CK-504.93-0.85

17. TITLE	NATIONAL UNIFORM WHEAT YIELD TRIAL (NUWYT)
OBJECTIVES	To confirm the yield and adaptability of elite lines contributed by wheat breeders of the country.

RESEARCH WORKER (S)	Dr.MakhdoomHussain, Dr. Muhammad Munir, Muhammad Saleem, Muhammad Ijaz, Muhammad Tariq and SherBazKhan							
PROJECT DURATION	2014-15 (Continuous)							
LOCATION	in all districts Islamabad will supplied to Dire	of the Pu design the ector Whe jab. The t	unjab. Nation trial. The ent at for planting rial will be co	Govt. Farms and farmer's fields al Wheat coordinator, NARC ries under coded names will be g and harvesting on the selected onducted under normal and late prformance.				
TREATMENTS &								
METHODOLOGY	Name o	f trial	Entries	Date of sowing				
	NUWYT (Normal)	40	2^{nd} & 3^{rd} week of Nov.				
	NUWYT (Short)	40	2^{nd} & 3^{rd} week of Dec.				
	Varieties Layout Plot size Reps Fertilizer	VarietiesSeven (5 for normal and 2 for rainfed) advanced lines will be contributed by WR I,FsdLayoutRCBDPlot size1.80 m x05 mReps04						

PREVIOUS YEAR'S RESULTS	On overall mean basis,(12 locations)Galaxy-13 remained at the to position with 4141 kg ha ⁻¹ yield, followed by Pirsabak-13 (4093 kg ha ⁻¹) and V-10110 (4070 kg ha ⁻¹) while the yield of local check variet was 3859 kg ha ⁻¹ in normal trials while in case of short trials, V-9917 remained at top with 3675 kg ha ⁻¹ yield, followed by V-99114(3618 k ha ⁻¹) and DN-93 (3597kg ha ⁻¹) while local check variety gave 3437 k ha ⁻¹ yield. Twenty four entries including two check varieties i.e.local check an Dharabi-11 were planted at different locations in Punjab under moisture stress conditions. Following varieties of wheat researc institute Faisalabad produced higher grain yield:					
	Variety CodeYield (kg ha ⁻¹)Percentage Increase over check varieties					
	NUWYT (Rain	fed)	-			
	Variety/line Yield Local Check Dharabi-11 (kg ha ⁻¹)					
	V-11183	3711	0.95	-5.21		
	V-12001	3730	1.47	-4.72		
	V-07096	4069	10.69 3.93			
	LSD	250.01				
	CV	12.1				

DURUM WHEAT (Triticum durum) AND TRITICALE (Triticosecale)

18. TITLE	MAINTENANCE OF DURUM AND TRITICALEGERMPLASM.					
OBJECTIVES	Enhancem	Enhancement of genetic variability in durum and triticale germplasm				
RESEARCH WORKER(S)	Dr.MakhdoomHussain, Dr. Muhammad Munir and MajidNadeem					
PROJECT DURATION	2014-15 (0	2014-15 (continuous nature)				
LOCATION	Wheat Res	Wheat Research Institute, Faisalabad.				
TREATMENTS & METHODOLOGY PREVIOUS YEAR'S	No. of entriesDurum (161) and Triticale (79)Plot size2 rows x 2.5 m.Sowing time2 nd week of NovemberDesirable lines will be utilized in hybridization program.					
RESULT	One hundred and fifty eight (158) entries of durum and 79 entries of Triticale were maintained.					
	Sr.#	Traits		Variability	Ŭ	
	1	Days to heading		Durum 91-128	Triticale 90-116	
	2	Days to meaning		151-164	156-167	
	3	Plant height (cm))	90-144	113-172	
	4	1000-grain weigh		33.12-50.74	-	
	5	Rust reaction (LI	_	0-30 S	0-20 MSS	
	6	Rust reaction (YI	R)	0-40 MSS	0-10 MS	

19. TITLE	CROSSING DURUM WHEAT WITH BREAD WHEAT					
OBJECTIVES	Introgression of genes for biotic and abiotic stresses in bread wheat					
RESEARCH WORKER(S)	Dr.MakhdoomHussain, Dr. Muhammad Munir and MajidNadeem					
PROJECT DURATION	2014-15 (continuous nature)					
LOCATION	Wheat Research Institute, Faisalabad.					
TREATMENTS	Stable wheat lines/varieties will be crossed with durum					

&METHODOLOGY	germplasm.Fifty crosses/back crosses will be attempted.
PREVIOUS YEAR'S RESULT	Fifty one crosses were attempted out of these41 crosses were harvested.

20. TITLE	STUDY OF BREEDING MATERIAL (F1-F7).					F ₇).	
OBJECTIVES	 i. To advance the generations. ii. To select the vigorous and disease resistant plants from segregating generations F₂-F₇. iii. To select the homozygous and uniform lines for yield testing. 						
RESEARCH WORKER(S)	Dr.MakhdoomHussain, Dr. Muhammad Munir and MajidNadeem						
PROJECT DURATION	2014-15 (Continuous nature)						
LOCATION	Wheat	Resear	ch Institute, Fa	isala	abad.		
TREATMENTS & METHODOLOGY	Selection in filial generations						
	ſ	Sr.#	Generations	Ν	o. of entries	Plot size	
	-	1	DF_1		41	1 row x 2.5m	l
	-	2	DF ₂		31	12 rows x 9.01	n
	-	3	DF ₃		19	3 rows x 3.0n	1
	-	4	DF_4		13	3 rows x 3.0n	
	-	5	DF ₅	_	15	3 rows x 3.0n	
		6	DF_6		260 S.H	1 row x 2.5m	l
	-	7	-	(13 Crosses)	4	
		1	DF ₇		67 SHRP	4 rows x 3.0n	1
PREVIOUS YEAR'S	Select	ion in fi	ilial generation	ıs			
RESULT		Sr	# Generatio	ns	En	tries	
					Studied	Selected	
		1	DF ₁		45	31	
		2	DF ₂		29	19	
		3	DF ₃		14	13	
		4	DF ₄		24	15 260 S H	
		5	DF ₅		21	260 S.H	
		6	DF ₆		240 SHR	(13 Crosses) 67 SHRP	
		7	DF_6 DF ₇		240 SHK 65	22	
	Twent		,	vere		preliminary yiel	d trial
	1 WOIL	, tho II			r ¹⁰ inotod to		6 1111I

21. TITLE	PRELIMINARY DURUM WHEAT YIELD TRIALS						
	(DA-TRIALS)						
OBJECTIVES	· · · · · · · · · · · · · · · · · · ·	es for vield and	l other agronomic paramete	ers			
Objectives	under irrigated conditions	-	outer agronomie paramet	10			
RESEARCH	Dr. Muhammad Munir, MajidNadeem, Muhammad Owais and Dr.						
WORKER (S)	MakhdoomHussain						
PROJECT	2014-15 (Continuous)						
DURATION							
LOCATION	Wheat Research Institute, Faisalabad.						
TREATMENTS &	????- durum wheat lines	will be tested in	preliminary yield trials und	ler			
METHODOLOGY			varieties (Durum-97,				
			laid out according to alp				
			ost promising lines will				
			omic traits to strengthen t	he			
	regular yield trials (DB-T	'rials).					
PREVIOUS YEAR'S	•	,	of 46) of durum wheat we				
RESULTS		•	Durum-97in their respecti	ve			
	trials. The results are as under:						
	citato: Tito results are as a	inder.					
			0/ 1				
	Variety Code	Yield	% Increase over				
	Variety Code		% Increase over Durum-97 (check)				
	Variety Code A-VII (Durum)	Yield (kg ha ⁻¹)	Durum-97 (check)				
	Variety Code A-VII (Durum) D-13210	Yield (kg ha ⁻¹) 5201	Durum-97 (check) 12.8				
	Variety Code A-VII (Durum) D-13210 D-13205	Yield (kg ha ⁻¹) 5201 5060	Durum-97 (check) 12.8 9.7				
	Variety Code A-VII (Durum) D-13210	Yield (kg ha ⁻¹) 5201	Durum-97 (check) 12.8				
	Variety Code A-VII (Durum) D-13210 D-13205 D-13201	Yield (kg ha ⁻¹) 5201 5060 4749	Durum-97 (check) 12.8 9.7 3.0				
	Variety Code A-VII (Durum) D-13210 D-13205 D-13201 D-13198 D-13214 D-13199	Yield (kg ha ⁻¹) 5201 5060 4749 4715	Durum-97 (check) 12.8 9.7 3.0 2.3				
	Variety Code A-VII (Durum) D-13210 D-13205 D-13201 D-13198 D-13214	Yield (kg ha ⁻¹) 5201 5060 4749 4715 4637	Durum-97 (check) 12.8 9.7 3.0 2.3 0.6				
	Variety Code A-VII (Durum) D-13210 D-13205 D-13201 D-13198 D-13214 D-13199	Yield (kg ha ⁻¹) 5201 5060 4749 4715 4637 4618	Durum-97 (check) 12.8 9.7 3.0 2.3 0.6				
	Variety Code A-VII (Durum) D-13210 D-13205 D-13201 D-13198 D-13214 D-13199 LSD (0.05) CV (%) A-VIII (Durum)	Yield (kg ha ⁻¹) 5201 5060 4749 4715 4637 4618 172 2.39	Durum-97 (check) 12.8 9.7 3.0 2.3 0.6 0.2				
	Variety Code A-VII (Durum) D-13210 D-13205 D-13201 D-13214 D-13199 LSD (0.05) CV (%) A-VIII (Durum) D-13234	Yield (kg ha ⁻¹) 5201 5060 4749 4715 4637 4618 172 2.39 5048	Durum-97 (check) 12.8 9.7 3.0 2.3 0.6 0.2 23.5				
	Variety Code A-VII (Durum) D-13210 D-13205 D-13201 D-13198 D-13214 D-13199 LSD (0.05) CV (%) A-VIII (Durum) D-13234 D-13240	Yield (kg ha ⁻¹) 5201 5060 4749 4715 4637 4618 172 2.39 5048 4961	Durum-97 (check) 12.8 9.7 3.0 2.3 0.6 0.2 23.5 21.4				
	Variety Code A-VII (Durum) D-13210 D-13205 D-13201 D-13198 D-13214 D-13199 LSD (0.05) CV (%) A-VIII (Durum) D-13234 D-13238	Yield (kg ha ⁻¹) 5201 5060 4749 4715 4637 4618 172 2.39 5048 4961 4952	Durum-97 (check) 12.8 9.7 3.0 2.3 0.6 0.2 23.5 21.4 21.2				
	Variety Code A-VII (Durum) D-13210 D-13205 D-13201 D-13214 D-13198 D-13214 D-13199 LSD (0.05) CV (%) A-VIII (Durum) D-13234 D-13238 D-13239	Yield (kg ha ⁻¹) 5201 5060 4749 4715 4637 4618 172 2.39 5048 4961 4952 4590	Durum-97 (check) 12.8 9.7 3.0 2.3 0.6 0.2 23.5 21.4 21.2 12.3				
	Variety Code A-VII (Durum) D-13210 D-13205 D-13201 D-13214 D-13198 D-13214 D-13199 LSD (0.05) CV (%) A-VIII (Durum) D-13234 D-13238 D-13239 D-13218	Yield (kg ha ⁻¹) 5201 5060 4749 4715 4637 4618 172 2.39 5048 4961 4952 4590 4533	Durum-97 (check) 12.8 9.7 3.0 2.3 0.6 0.2 23.5 21.4 21.2 12.3 10.9				
	Variety Code A-VII (Durum) D-13210 D-13205 D-13201 D-13198 D-13214 D-13199 LSD (0.05) CV (%) A-VIII (Durum) D-13234 D-13238 D-13238 D-13218 D-13219	Yield (kg ha ⁻¹) 5201 5060 4749 4715 4637 4618 172 2.39 5048 4961 4952 4533 4516	Durum-97 (check) 12.8 9.7 3.0 2.3 0.6 0.2 23.5 21.4 21.2 12.3				
	Variety Code A-VII (Durum) D-13210 D-13205 D-13201 D-13198 D-13214 D-13199 LSD (0.05) CV (%) A-VIII (Durum) D-13234 D-13238 D-13238 D-13218 D-13219 LSD (0.05)	Yield (kg ha ⁻¹) 5201 5060 4749 4715 4637 4618 172 2.39 5048 4961 4952 4590 4533 4516 195	Durum-97 (check) 12.8 9.7 3.0 2.3 0.6 0.2 23.5 21.4 21.2 12.3 10.9				
	Variety Code A-VII (Durum) D-13210 D-13205 D-13201 D-13198 D-13214 D-13199 LSD (0.05) CV (%) A-VIII (Durum) D-13234 D-13238 D-13238 D-13218 D-13219	Yield (kg ha ⁻¹) 5201 5060 4749 4715 4637 4618 172 2.39 5048 4961 4952 4533 4516	Durum-97 (check) 12.8 9.7 3.0 2.3 0.6 0.2 23.5 21.4 21.2 12.3 10.9				
	Variety Code A-VII (Durum) D-13210 D-13205 D-13201 D-13198 D-13214 D-13199 LSD (0.05) CV (%) A-VIII (Durum) D-13234 D-13238 D-13238 D-13218 D-13219 LSD (0.05)	Yield (kg ha ⁻¹) 5201 5060 4749 4715 4637 4618 172 2.39 5048 4961 4952 4590 4533 4516 195	Durum-97 (check) 12.8 9.7 3.0 2.3 0.6 0.2 23.5 21.4 21.2 12.3 10.9				
	Variety Code A-VII (Durum) D-13210 D-13205 D-13201 D-13198 D-13214 D-13199 LSD (0.05) CV (%) A-VIII (Durum) D-13234 D-13238 D-13238 D-13218 D-13219 LSD (0.05)	Yield (kg ha ⁻¹) 5201 5060 4749 4715 4637 4618 172 2.39 5048 4961 4952 4590 4533 4516 195	Durum-97 (check) 12.8 9.7 3.0 2.3 0.6 0.2 23.5 21.4 21.2 12.3 10.9				

22. TITLE	REGULAR DURUM WHEAT YIELD TRIAL (DB-TRIAL)							
OBJECTIVES	To evaluate the promising lines of durum wheat selected from preliminary yield trials for yield and other agronomic parameters under irrigated conditions.							
RESEARCH WORKER (S)	Dr. Muhammad Munir, M MakhdoomHussain	MajidNadeem,	Muhammad Owais and Dr.					
PROJECT DURATION	2014-15 (Continuous)	2014-15 (Continuous)						
LOCATION	Wheat Research Institute, I	Wheat Research Institute, Faisalabad.						
TREATMENTS & METHODOLOGY	24durum wheat lines will be tested in regular yield trials under irrigated conditions including three check varieties (Durum-97, and Galaxy-13). Trial will be laid out according to alpha lattice with three replications. The most promising lines will be promoted in MTWV on the basis of desirable economic traits.							
PREVIOUS YEAR'S RESULTS	One advanced line of durum wheat was found high yielding than check variety Durum-97.							
	Variety Code	Yield (kg ha ⁻¹)	% Increase over Durum-97 (check)					
	B Trial (Durum)							
	D-12306	5424	17.6					
	LSD (0.05)	172						
	CV (%)	2.39						

23. TITLE	EVALUATION OF INTERNATIONAL YIELD TRIALS (CIMMYT) OF DURUM WHEAT
OBJECTIVES	To evaluate the CIMMYT material for incorporation in yield trials
RESEARCH WORKER (S)	Dr.MakhdoomHussain, Dr. Muhammad Munir and MajidNadeem
PROJECT DURATION	2014-15
LOCATION	Wheat Research Institute, Faisalabad.
TREATMENTS & METHODOLOGY	46 th International Durum Screening Nursery (IDSN) is expected, which will be laid out according to the instructions supplied by the CIMMYT.

PREVIOUS YEAR'S	Twenty seven lines out of 164 lines of 45 th International Durum
RESULTS	Screening Nursery were selected on the basis of their performance
	against diseases. Line E-7110 had the highest 1000-grain weight (52.86
	g) followed by E-7136 (51.32 g) and E-7114 (48.90 g).

BARLEY (Hordeumvulgare)

24.TITLE	MAINTENANCE OF BARLEY GERMPLASM AND					
	HYBRIDIZATION					
OBJECTIVES	i. To combine high yield, tolerance to biotic & abiotic stresses,					
	quality and other desirable characteristics.					
	ii. To conserve existing genetic variability and broaden the base of					
	genetic diversity					
RESEARCH	Dr. GhulamMahboobSubhani, Dr. MakhdoomHussain, and Abdullah					
WORKER (S)						
PROJECT	2014-15					
DURATION						
LOCATION	Wheat Research Institute, Faisalabad.					
TREATMENTS & METHODOLOGY	Seventy two entries of germplasm will be planted. Each entry will be sown in two rows of 2.5 meter length during 1 st week of November. New entries selected from the local material and international trials/ nurseries on the basis of superiority, agronomic characters and resistance to biotic and abiotic stresses will be added. Thirty crosses will be attempted.					
PREVIOUS YEAR'S RESULTS	Seventy genotypes were maintained. Five successful fresh crosses threshed for generation advancement.					
25.TITLE	STUDY OF FILIALGENERATIONS (F ₁ , F ₂ , F ₃ , F ₆ and F ₇) OF BARLEY					
OBJECTIVES	To advance the generation for developing homozygous line with desirable traits.					
LOCATION						
	Wheat Research Institute, Faisalabad.					
RESEARCH WORKER(S)	Dr. GhulamMahboobSubhani and Mr. Abdullah					
WORKER(S)	Dr. GhulamMahboobSubhani and Mr. Abdullah					
WORKER(S) PROJECT						
WORKER(S) PROJECT DURATION	Dr. GhulamMahboobSubhani and Mr. Abdullah 2014-15					
WORKER(S) PROJECT DURATION TREATMENTS &	Dr. GhulamMahboobSubhani and Mr. Abdullah 2014-15 Disease resistantand good plants will be selected and advanced through					
WORKER(S) PROJECT DURATION	Dr. GhulamMahboobSubhani and Mr. Abdullah					

	Generations	Crosses	Entries	Plot Size		
	\mathbf{F}_1	05	05	1row x 2.5 m		
	F_2	17	17	1row x 2.5 m		
	F_3	09	09	4 row x 2.5 m		
	F ₄	17	17	4 row x 2.5 m		
	F ₇	17	17	4 row x 2.5 m		
PREVIOUS YEAR'S	Five successful crosses were threshed. Seventeen entries from F ₁ , 09					
RESULT	entries from F_2 , 17 entries from F_3 and 17 entries from F_6 were selected					
	for generation advancer	ment.				

26.TITLE	PRELIMINARY BARLEY YIELD TRIAL					
OBJECTIVES	To test different lines/varieties of barley for yield and other desirable traits.					
RESEARCH WORKER (S)	Dr. GhulamMahboobSubhani and Abdullah					
PROJECT DURATION	2014-15					
LOCATION	Wheat Research Institute, Faisalabad					
TREATMENTS &						
METHODOLOGY		Varieties/lines	22			
		No. of trials	2 (A1 & A2) 11 lines + 1 check variety			
		Layout	RCBD			
		Rep	03			
		Plot size	1.8 m x 5.0 m			
		Fertilizer NPK 50–50–0 (kgha ⁻¹⁾				
		Sowing date	1 st fortnight of Nov.			
PREVIOUS YEAR'S RESULTS	Trial was n	ot conducted				

27.TITLE	REGULAR BARLEY YIELD TRIAL
OBJECTIVES	To test different lines/varieties of barley for yield potential and other
	desirable traits.
RESEARCH	Dr. GhulamMahboobSubhani and Abdullah
WORKER (S)	
PROJECT	2014-15
DURATION	
LOCATION	Wheat Research Institute, Faisalabad.

TREATMENTS &						
METHODOLOGY	Varieties/lines 22					
	No. of trials			2 (B1 & B2) 11 lines + 1 check		
				variety		
	Layout			RCBD		
	Rep			03		
	Plot	size		1.8 m x 5.0) m	
	Fert	ilizer NPK (kg		50 - 50 - 0		
	Sow	ing date		1 st . fortnigl	nt of November	r
PREVIOUS YEAR'S	Twenty two advanced lines of barley alongwith check variety Haider-					
RESULTS	93 were tested in advance yield trials (B1 and B2 trials). Among these					
		-	ied bette	r in each tr	ial than check	variety Haider
	93 as follows,					
	B1			B2		
	Rank	Line/Var.	Yield		Line/Var.	Yield
			(Kg ha			(Kg ha ⁻¹)
	1	B-12025	2954		B-12032	3077
	2	B-12013	2521		B-12030	2750
	3	B-12024	2470) 3	B-12027	2696
		Haider-93	2124	-	Haider-93	2046
		LSD (0.05)	306.9)	LSD (0.05)	308.8
						l line B-12025
	produced maximum grain yield (2954 kg ha ⁻¹) followed by B-12013 (2521 kg ha ⁻¹) while in B2 trial the advance line B-12032 produced					
				ha ⁻¹) follow	wed by B-1203	0 (2750 kg ha ⁻
	1) and B-	-12027 (2696 k	$(g ha^{-1}).$			

28.TITLE	MICRO YIELD TRIAL OF BARLEY VARIETIES
OBJECTIVES	To assess yield potential of advanced lines against check variety under different agro-climatic conditions.
RESEARCH WORKER (S)	Abdullah, Dr. GhulamMahboobSubhani and Dr. MakhdoomHussain
PROJECT DURATION	2014-15
LOCATION	Punjab Province

TREATMENTS &					
METHODOLOGY	Varieties/lines	11 + 01 Haider-93			
METHODOLOGI	v arteties/ intes	(Check)			
	Layout	RCBD			
	Rep	03			
	Plot size	$1.8 \text{ m} \times 5 \text{ m}$			
	Fertilizer NPK (Kg ha ⁻¹)	50 - 50 - 0			
	Sowing date	Mid of November			
PREVIOUS YEAR'S	On overall mean basis fourteen advanced lines performed better than				
RESULTS	check variety Haider-93 (1940 Kg ha ⁻¹). The advanced line B-100007				
	produced maximum grain yield of 2883 Kg ha ⁻¹ followed by B-09006				
	$(2681 \text{ Kg ha}^{-1})$, B-09031 (2463 Kg ha ⁻¹) and B-05011 (2395 Kg ha ⁻¹).				
29.TITLE	INTERNATIONAL NURSERY/ YIELD TRIALS				
OBJECTIVES	To test different lines/varieties of barley for yield potential and other				
	desirable traits.				
RESEARCH	Dr. GhulamMahboobSubhani and Abdullah				
WORKER (S)					
PROJECT	2014-15				
DURATION					
LOCATION	Wheat Research Institute, Faisalabad				
TREATMENTS &	New International nurseries / Yield Trials received shall be planted and				
METHODOLOGY	maintained as per instructions				
PREVIOUS YEAR'S	Sixty five advanced lines of Barley were tested in Barley observatory				
RESULTS		k variety Haider-93 in which eleven			
	1	d to next tiral, while 101 advanced			
	-	heir yield performance in different			
		13, IBYT 2012-13, INBYT 2012-13,			
	,	ety Haider-93 in which 67 advanced			
	lines performed better than check v	ariety Haider-93.			

30.TITLE	SOWING DATE TRIAL OF BARLEY
OBJECTIVES	To find out best sowing time of barley advanced line.
RESEARCH WORKER (S)	Dr. GhulamMahboobSubhani, Dr. MakhdoomHussain and Abdullah
PROJECT DURATION	2014-15
LOCATION	Wheat Research Institute, Faisalabad.

TREATMENTS &	Varieties. = $11 + 01$ (Check variety)					
METHODOLOGY	Layout = RCBD					
	Rep. $=$ (Rep. $= 03$				
		Plot size = $5 \text{ m} \times 6 \text{ rows}$				
	Fertilize	r = 50-50-0 NF	$PK (kg ha^{-1})$			
	Date of S	Sowings $= 3$				
	$D_1 = 5^{th}$	November, D	$v_2 = 20^{\text{th}} \text{ Nove}$	ember & $D_3 =$	5 th December	r
PREVIOUS YEAR'S		advanced lines	•	-	•	aider 93)
RESULTS	were test	ted at two sow	ing dates and	results are as	under:	
		Entry		Yield (kg ha ⁻		
		•	D1	D2	Rainfed	
		B-12035	2756	2964	2778	
		B-12036	2394	2833	2027	
		B-12039	3222	2733	1964	
		B-12042	2858	2247	2161	
		B-12044	2911	2878	2633	
		B-12045	2972	3014	3431	
		B-12046	3011	2725	2872	
		B-12048	3539	3231	2269	
		B-12050	2906	2644	2717	
		B-12051	3286	2517	2508	
		B-12053	3339	2519	2439	
		Haider-93	2497	2783	1917	
		LSD	404.38	377.35	407.34	1
	Advanced line B-12048 gave maximum grain yield 3539 kg ha ⁻¹ at first					
	planting (13 th November). On overall mean basis of sowing dates, the					
	advanced line B-12048 produced maximum grains (3385 kg ha ⁻¹)					
	followed by B-12045 (2993 kg ha ⁻¹), B-12039 (2978 kg ha ⁻¹) and B-					
	12053 (2929 kg ha ⁻¹). Nine advanced lines performed better than check					
	variety Haider-93 and among them top five entries were selected for testing their yield performance in different agro-ecological zones					
	testing th	neir yield perfo	ormance in di	fferent agro-e	cological zon	es

31.TITLE	SEED PRODUCTION OF BARLEY VARIETIES AND ADVANCED LINES.
OBJECTIVES	To produce pure seed of barley/lines for experimental use and farmers
RESEARCH WORKER(S)	Dr. GhulamMahboobSubhani and Abdullah
DURATION	2014-15 (continuous nature)
LOCATION	Wheat Research Institute, Faisalabad.
TREATMENTS & METHODOLOGY	One kanal to one acre of barley varieties and advanced lines will be sown

Sr #	Varieties/lines	Quantity (kg)
1	B-09005	22
2	B-09031	10
3	B-10003	11
4	B-10006	15
5	B-10009	14
6	B-10014	10
7	B-11011	19
8	B-11016	30
9	B-12035	25
10	B-12039	16
11	B-12042	8
12	B-12044	13
13	B-12045	9
14	B-12046	15
15	B-12050	8
16	B-12051	13
17	B-12053	11
18	B-11001	40
19	B-09006	110
20	B-09008	105
21	B-05011	86
22	Haider-93	220
23	Jau-83	25
24	Jau-87	32

WHEAT PATHOLOGY

32.TITLE	RUST TRAP NURSERIES
OBJECTIVES	 i. To trap the early landed rust inoculums and its multiplications on border rows of morocco as well as on different varieties ii. To monitor the rust virulence pattern at different locations
RESEARCH WORKER (S)	Faqir Muhammad, Dr. ArshadMehmood and Muhammad MakkyJavaid
PROJECT DURATION	2014-15 (Continuous Nature)

LOCATION	Wheat Research Institute, Faisalabad and seven locations of LDSN			
TREATMENTS & METHODOLOGY	No. of entries	LR Genes Differential sets = 40 YR Genes Differential sets = 28 SR Genes Differential sets = 16 Commercial Varieties/lines = 100		
	Susceptible Check Sowing Date	Morocco at border and every 10th entryAt Faisalabad:4th week of September (1st Trap)2nd week of November (2nd Trap)		
	Plot Size	3rd week of December (3rd Trap)Other Locations:Mid NovemberTwo rows of two meter length		
	Assessment Scale Harvesting Date	Rust data will be recordedaccording to Modified Cobb Scale (Peterson et al., 1948).Mid April to Mid May		
	The trial will be sown in two sets, in 1^{st} set, three $(1^{st}, 2^{nd} \& 3^{rd})$ rust trap nurseries will be sown with one month intervals at WRI, Faisalabad while 2^{nd} set entries will be sown at multi locations i.e. Bahwalpur, Khanewal, Islamabad, Fateh Jhang, Pirsabakand Peshawar and rust data will be recorded			
PREVIOUS YEAR'S RESULTS	yellow rust on 03-02-20 virulence pattern indicate Lr 19, Lr 25, Lr 27 +31, well as the isogeniclines Yr 15, Yr 17,Yr18, Yr	the leaf rust was trapped on 24-11-2013 while 014 in 1 st trap nursery. The results regarding edthat the isogenic linesfor leaf rust including Lr 28, Lr 32, Lr 36, Lr37 and Lr 23+Gaza as foryellowrust including Yr 1, Yr3, Yr5,Yr 10, 24, Yr 26, Yr 28, YrCvandYrsp were found of the tested entries showed the symptoms of		
		TIELD LOSSES DUE TO LEAF AND		

OBJECTIVES	To estimate yield losses due to leaf and yellow rusts.
RESEARCH WORKER (S)	Muhammad MakkyJavaid, Faqir Muhammad and Dr. ArshadMehmood
PROJECT DURATION	2013-15
LOCATION	Wheat Research Institute, Faisalabad

TREATMENTS&			
METHODOLOGY	Varieties	LR 1. Mor	
		2. Sehe	
		3. V-08203	
		YR 1. Mor	
		2. Inqi	
	Treatments	3. V-08203T0= ControlT1=Propiconazole	
	Treatments		
		T2=Tebucona	
	Sowing Date		lovember, 2014
			ecember.,2014
	Design	Split plot with	three replications
	Plot Size	Three rows with 5 meter length per treatment combination Rust data will base on the Modified Cobb Scale (Peterson et al., 1948).	
	Rust		
	Assessment Scale		
	Rust	Pre-	Before application of
	Assessment Stage	treatment	rusticides
		Post - treatment	three and seven days after application of
		treatment	rusticides
	Estimation of	Will base on 1000-grain weight and grain	
	yield losses	yield of treate	d and untreated plots
PREVIOUS YEAR'S	The yield losses due to	b leaf and yello	ow rust were determined under
RESULTS			The rust severity and response
	•		cale described by Peterson et al.
	(1948). The results rega	rding yield data	are given in Fig.1 & Fig. 2

34.TITLE	SCREENING OF WHEAT AND BARLEY ADVANCED LINES/VARIETIES AGAINST RUSTSAT DIFFERENT LOCATIONS	
OBJECTIVES	 i. To screen advanced lines of bread wheat and barley against leaf, stem and yellow rusts at adult stage under different disease development conditions/different agro-ecological conditions. ii. Elimination of susceptible lines from breeding program (drought, heat, salt, yield etc) 	

RESEARCH WORKER (S)	Faqir Muhammad, Muhammad MakkyJavaid and Dr. ArshadMehmood		
PROJECT DURATION	2014-15 (Continuous Nature)		
LOCATION		ad & RARI, Bahawalpur (Artificial Screening) mabad, Pirsabak& Peshawar (Natural)	
TREATMENTS& METHODOLOGY	No. of entries: Susceptible Check: Sowing Date: Plot Size: Rust Assessment Scale: Rust Assessment date (s)	 290 Morocco at boarder & at every 10th entry At Faisalabad: 1st week of November Other Locations: Last week of November Single row of two meter length Rust data will base on the modified Cobb scale (Peterson et al., 1948). At adult plant stage 2nd and 4th week of March 	
PREVIOUS YEAR'S RESULTS	All the entries were found free from stem rust, however among tested entries; twenty eight entries showed susceptible reaction to yellow rust, twenty three entries showed susceptibility to leaf rust while forty one entries showed susceptibility to both rusts (YR &LR). Moreover, the entries showing rust rating 0 to 30 MRMS under stress conditionswere promoted / selected for next study as under natural conditions such reaction types proved fairly resistant.		

35.TITLE	EVALUATION OF ADVANCED LINES/VARIEITIES FOR SEEDLING AND ADULT PLANT RESISTANCE TO LEAF RUST	
OBJECTIVES	To identify rust resistant genes in advanced lines/varieties of wheat.	
RESEARCH WORKER (S)	Muhammad MakkyJavaid, Faqir Muhammad, Dr.ArshadMehmood, Dr.MakhdoomHussain,HumaSaffdar, Sabina Asghar, Dr. SajidurRehman and Dr. Muhammad ZaffarIqbal	
PROJECT DURATION	2014-15	
LOCATION	Wheat Research Institute, Faisalabad and Wheat Research Sub-Station, Murree	
TREATMENTS &	For Seedling Study	
METHODOLOGY	 i. The seed of different lines/varieties will be sown in pots. ii. After seven days of germination the plants will be inoculated with leaf rust inoculum. iii. Then thesepots will be kept in dew chamber at 15-22 °C and 100 % relative humidity for 8 to 12 hours. 	

	 iv. After these pots will be shifted into the growth chamber for six days at 15 to 22°C, with 16 hours photoperiod and 8 hours dark period. v. After six days pots will be transferred into glass house and rust data will be recorded after 14-16 days of inoculation. For Adult Plant Study Artificial rust epidemic conditions will be created in field and data will be recorded twice at adult plant stage. For Molecular Study Molecular markers will be applied for gene identification.
PREVIOUS YEAR'S RESULTS	The rust infection type data at seedling stage indicate that the eleven entries including V-10355, V-12266, V-12284, V-11098, V-11061, V- NN-GAN-3, V-NR-411, V-12265, V-11041 and V-12304 showed low infection type. While the remaining tests entries showed high infection types against mixture of leaf rust inoculums. While the same entries were tested at adult plant stage for the identification of APR sources and its conformation through molecular markers application.

36.TITLE	SCREENING OF ADVANCED WHEAT MATERIAL AGAINST KARNAL BUNT (<i>Tilletiaindica</i>)
OBJECTIVES	To identify karnal bunt resistant material for utilization in hybridization program.
RESEARCH WORKER (S)	Dr.ArshadMehmood, Faqir Muhammad, Muhammad MakkyJavaid& Muhammad Burhan.
PROJECT DURATION	2014-15 (continuous nature).
LOCATIONS	Plant Pathology Section, Faisalabad and CCRI, Pirsabak
TREATMENTS & METHOD OLOGY	Advanced lines selected for MWYT & NUWYT, 2014-15 as well as commercial varieties of bread wheat will be tested under inoculated conditionin the field at Faisalabad and CCRI, Pirsabak. Each entry will be sown in plot size of 2x0.30 m ² . Susceptible varieties i.e., AS-2002, PAK-81 and WL-711 will be sown alternatively at every 10 th entry. The spore suspension will be injected by Syringe method to the 10 heads of each variety at boot stage. Disease incidence and severity of each spike will be recorded according to the scale of Augil <i>atel.</i> ,(1989), where 0 is (Highly resistant), 0.1-1.0 (Resistant), 1.1-2.0 (Moderately resistant), 2.1-5.0 (Moderately susceptible), 5.1.10.0 (Susceptible) 10.0 and above (Highly susceptible).
PREVIOUS YEAR'S RESULTS	During cropping season, wheat advanced lines included in MWYT & NUWYT, 2013-14 and 15 commercial varieties were studied. Among tested entries, 28 lines/varieties found highly resistant, 03 resistant, 06 moderately resistant,07 moderately susceptible, 06 susceptible and 01 highly susceptible.

	SURV	EY OF KARNAL BU	INT AND	BLACH	K POINT	OF WHEA		
OBJECTIVES		Tofind out the prevalence of karnal bunt and black point diseases of wheat in Punjab.						
RESEARCH WORKER (S)		Dr. ArshadMehmood, Faqir Muhammad, M. MakkyJavaid, and Muhammad Saleem						
PROJECT DURATION	2014-1	2014-15 continuous nature.						
LOCATION	Punjab	Punjab Districts (all locations of Micro trials)						
TREATMENTS & METHOD OLOGY	through Patholo	Samples (250 grams each) will be collected from Micro trial throughout the Punjab. These samples would be analyzed in Whea Pathology Lab. to record the percentage incidence of karnalbunt an black point in wheat.						
PREVIOUS YEAR'S RESULTS	prevaler received	sults of karnal bunt an nce (%) in seed sample d from fourteen locations Locations	s of NUW s of Punjab	VYT & N are as un o of infec	IWYT (20 der, ted Samp	013-14)		
	#		ĸ	(out B	of 70) E	BP		
			N N	S	N I	S S		
	1	Kala Shah Kaku	05	04	48	38		
	2	KotNaina	28	13	33	26		
	3	Gujranwala	02	10	16	18		
	4	Yousafwala	0	02	22	23		
	5	Dhakar Seed Farm	07	15	33	18		
	6	Bahawal Nagar	0	05	22	24		
			00	01	10			
	7	Vehari	02	01	19	13		
	8	Multan	04	01	25	24		
	8 9	Multan Khanewal	04 03	01 02	25 22	24 08		
	8 9 10	Multan Khanewal Karor	04 03 0	01 02 03	25 22 37	24 08 32		
	8 9 10 11	Multan Khanewal Karor Piplan	04 03 0 0	01 02 03 04	25 22 37 19	24 08 32 15		
	8 9 10	Multan Khanewal Karor	04 03 0	01 02 03	25 22 37	24 08 32		

Sr. Locations	D	Disease Prevalence (%)			
#	K	B	В	P	
	Ν	S	Ν	S	
1 Kala Shah Kaku	ı 7.5	6.0	72.7	57.5	
2 KotNaina	42.4	19.6	50.0	39.3	
3 Gujranwala	3.0	15.1	24.2	27.2	
4 Yousafwala	0	3.0	33.3	34.8	
5 Dhakar Seed Fa	rm 10.6	22.7	50.0	27.2	
6 Bahawal Nagar	0	7.5	33.3	36.3	
7 Vehari	3.0	1.5	28.7	19.6	
8 Multan	6.0	1.5	37.8	36.3	
9 Khanewal	4.5	3.0	33.3	12.1	
10 Karor	0	4.5	56.0	48.4	
11 Piplan	0	6.0	28.7	22.7	
12 Sargodha	1.5	7.5	27.2	30.3	
Total		-	-		

AGRONOMY

38.TITLE	EFFECT OF CLIMATE CHANGE ON SOWING TIME OF WHEAT CROP						
OBJECTIVES	i. To determine the shift in sowing time of wheat under changing climatic scenario.ii. To explore optimum sowing time of promising lines of wheat.						
RESEARCH WORKER(S)	Dr. MakhdoomHussain, Dr.GhulamMahboobSubhani and YasirRamzan						
PROJECT DURATION	2014-15 (Continuous)						
LOCATION	Wheat Research Institute, Faisalabad.						
METHODOLOGY	$\begin{array}{ c c c c c c } \hline D_1 = 1^{st} & November & D_2 = 10^{th} & November \\ \hline D_3 = 20^{th} & November & D_4 = 30^{th} & November \\ \hline D_5 = 10^{th} & December & D_6 = 20^{th} & December \\ \hline D_7 = 30^{th} & December \\ \hline \end{array}$						
	1. Plant count per m 2. Productive tillers/m 3. Days to heading 4. Physiological maturity 5. Plant height (cm) 6. Lodging % age 7. No. of grains/spike. 8. 1000-grain weight (g) 9. Grain yield (kg ha ⁻¹). 1000-grain weight (g)						

PREVIOUS YEAR RESULTS

Advanced lines/	Ist	10 th	20^{th}	30 th	10 th	20^{th}	30 th	
Varieties	Nov.	Nov.*	Nov.*	Nov.	Dec.	Dec.	Dec.	Mean
FSD-08	5903	5446	4910	4831	5164	4614	4469	5048 a
Lasani-08	5897	4560	4475	5429	5225	4537	3756	4840 b
Punjab-11	5950	4595	4654	4492	4696	4505	3988	4697 cd
Millat-11	5401	4753	4378	4870	5155	4935	4137	4804 bc
Galaxy-13	5782	4630	5055	5720	5298	5178	4034	5100 a
V-09082	4746	3743	4516	3968	3197	3741	3274	3884 g
V-08203	5589	4462	5062	5624	5150	5199	4321	5058 a
V-10104	4479	4170	4560	3925	4169	3659	3313	4039 f
V-10110	5710	3601	4217	4650	4647	4750	4226	4543 e
V-10355	5538	3669	4206	4739	4482	4438	4287	4480 e
V-11160	5806	3741	4579	5559	5010	4503	4324	4789 bc
NR-397	5897	3786	4433	5676	5116	4318	4307	4790 bc
V-12001	5631	3825	4110	4342	4594	4857	4661	4574 de
V-11183	5830	4564	4021	5909	5508	5470	4736	5148 a
Mean	5583 a	4253 f	4513 e	4981 b	4815 c	4622 d	4131 g	

LSD (0.05) for sowing dates=128.4, varieties= 90.82, interaction=3 40

*wheat experiments (D2 And D3) were badly lodged (90-100%) due to periodic rains and wind. Therefore, grain formation stage of these experiments were adversely affected which reduced the yield significantly.

39.TITLE	RESPONSE OF SEED RATE ON GRAIN YIELD OF ADVANCED WHEAT LINES
OBJECTIVES	To determined optimum seed rate of different advanced lines
RESEARCH WORKER(S)	YasirRamzan and Dr.GhulamMahboobSubhani
PROJECT DURATION	2014-15
LOCATION	Wheat Research Institute, Faisalabad.

TREATMENTS &	(A) Varieties/advan	(A) Varieties/advanced lines=08 (B) Seed rate kg ha ⁻¹ =05				
METHODOLOGY	Sowing dates $= 02$	10 th November	and 10 th December.			
	Plot size	1.62 m x 6 m				
	Line spacing	27 cm apart rows with 6 rows power planter.				
	Layout	Experiment will be conducted in split plot				
		arrangement with randomized complete block.				
		Varieties will be kept in main plots & seed rates				
		in sub-plots				
	Repeats	03				
	Fertilizer	120-90-60 NPK	kg ha ⁻¹			
		D : 11 100	0.75			
		Faisalabad 08	$S_1 = 75$			
		₂₌ Punjab11 ₃₌ V-09082	$S_2 = 100$			
		₃₌ v-09082 ₄ =V-09087	$S_3 = 125$ $S_4 = 150$			
		$_{5}=$ V-11183	54-150			
		5 = V - 10104				
		$r_{7} = V - 10110$				
		₃ =V-10355				
		p = V - 11160				
		$V_{10} = V - 12001$				
	V	11= Lasani 08				
	V	$_{12}$ = AARI-11				
			kept constant and characters likes			
			m), productive tillers/ m^2 , No. of			
		grain weight (g)	and grain yield (kg ha ⁻¹) will be			
	recorded.					
]					

Advance	d	Seed rate	(kg ha ⁻¹)			Mean
lines/ Varieties		75	100	125	150	-
Fsd-08		4585	6025	5720	4623	5238 b
Punjab-11		4805	5754	5034	5082	5169 bc
V-09082		4324	4547	4424	4390	4421 h
V-09087		4324	4674	4609	4393	4500 gh
V-11183		5021	6115	5964	5418	5629 a
V-10104		4544	5436	4757	4719	4864 e
V-10110		4588	5933	5058	4863	5111 c
V-10355		3992	4997	4657	4492	4534 g
V-11160		4554	5065	4612	4595	4707 f
V-12001		4036	5298	5113	4973	4855 e
Lasani-08		5058	5161	4955	4784	4990 d
AARI-11		5079	5024	4794	4712	4902 de
Mean		4576d	5336a	4975b	4754c	
LSD (0.0. 128.5	5) for	varieties =	95.14,	seed rat	es= 37.10), V \times S =
128.5 Grain yield Advanced	(kg ha	⁻¹) (Late So			es= 37.10), V ×S =
128.5 Grain yield Advanced lines/	(kg ha	⁻¹) (Late Sov Seed	wn) rate (kg	ha ⁻¹)	es= 37.10), V ×S =
128.5 Grain yield Advanced	(kg ha	⁻¹) (Late Sov Seed 5 100	wn) rate (kg	ha ⁻¹) 25		
128.5 Grain yield Advanced lines/ Varieties	(kg ha	⁻¹) (Late Sov Seed 5 100 58 5065	wn) rate (kg 5 50	ha ⁻¹) 25 299 4	150	Mean
128.5 Grain yield Advanced lines/ Varieties Fsd-08	(kg ha 1 75 380	⁻¹) (Late Sov Seed 5 100 58 5065 83 5075	wn) rate (kg 5 50 5 52	ha ⁻¹) 25 25 4 06 4	150 .955	Mean 4747 c
128.5Grain yieldAdvancedlines/VarietiesFsd-08Punjab-11	(kg ha 7: 380 438	⁻¹) (Late Sov Seed 5 100 58 5065 83 5075 52 4167	wn) rate (kg 5 50 5 52 7 42	ha ⁻¹) 25 2 99 4 06 4 80 4	150 .955 .640	Mean 4747 c 4826 b
128.5Grain yieldAdvancedlines/VarietiesFsd-08Punjab-11V-09082	(kg ha 1 75 380 435 365	⁻¹) (Late Sov Seed 5 100 58 5065 83 5075 52 4167 25 3961	wn) rate (kg 5 50 5 52 7 42 40	ha ⁻¹) 25 25 99 4 06 4 80 4 81 3	150 -955 -640 -150	Mean 4747 c 4826 b 4062 f
128.5Grain yieldAdvancedlines/VarietiesFsd-08Punjab-11V-09082V-09087	(kg ha 75 380 435 365 365	⁻¹) (Late Sov Seed 5 100 68 5065 83 5075 52 4167 25 3961 87 5322	wn) rate (kg 5 50 5 7 42 40 2 51	ha ⁻¹) 25 25 2 99 4 06 4 80 4 81 3 71 4	150 -955 -640 -150 -741	Mean 4747 c 4826 b 4062 f 3852 g
128.5 Grain yield Advanced lines/ Varieties Fsd-08 Punjab-11 V-09082 V-09087 V-11183	(kg ha 75 380 435 365 365 485	⁻¹) (Late Sov Seed 5 100 58 5065 83 5075 52 4167 25 3961 87 5322 50 4242	wn) rate (kg 12 5 50 5 52 7 42 40 2 51 2 40	ha ⁻¹) 25 2 99 4 06 4 80 4 81 3 71 4 57 3	150 -955 -640 -150 -741 -691	Mean 4747 c 4826 b 4062 f 3852 g 5018 a
128.5 Grain yield Advanced lines/ Varieties Fsd-08 Punjab-11 V-09082 V-09087 V-11183 V-10104	(kg ha 78 380 438 365 365 488 488 415	⁻¹) (Late Sov Seed 5 100 58 5065 83 5075 52 4167 25 3961 87 5322 50 4242 33 4702	wn) rate (kg 5 50 5 52 7 42 40 2 51 2 40 2 40 2 40 2 40 2 40 2 40 2 40 2 4	ha ⁻¹) 25 25 99 4 06 4 80 4 80 4 81 3 71 4 57 3 49 4	150 -955 -640 -150 -741 -691 -831	Mean 4747 c 4826 b 4062 f 3852 g 5018 a 4070 f
128.5 Grain yield Advanced lines/ Varieties Fsd-08 Punjab-11 V-09082 V-09087 V-11183 V-10104 V-10110	(kg ha 78 380 438 438 362 362 488 412 392	⁻¹) (Late Sov Seed 5 100 58 5065 83 5075 52 4167 25 3961 87 5322 50 4242 33 4702 81 4462	wn) rate (kg 12 5 50 5 52 7 42 40 2 51 2 40 2 48 2 45	ha ⁻¹) 25 2 99 4 06 4 80 4 81 3 71 4 57 3 49 4 37 4	150 -955 -640 -150 -741 -691 -831 -184	Mean 4747 c 4826 b 4062 f 3852 g 5018 a 4070 f 4417 d
128.5 Grain yield Advanced lines/ Varieties Fsd-08 Punjab-11 V-09082 V-09087 V-11183 V-10104 V-10355	(kg ha 1 7 380 438 438 438 438 438 438 438 438	⁻¹) (Late Sov Seed 5 100 58 5065 83 5075 52 4167 25 3961 87 5322 50 4242 33 4702 81 4462 12 5175	wn) rate (kg 5 50 5 52 7 422 40 2 51 2 40 2 48 2 45 5 51	ha ⁻¹) 25 2 06 4 80 4 81 3 71 4 57 3 49 4 37 4 92 4	150 -955 -640 -150 -741 -691 -831 -184 -235	Mean 4747 c 4826 b 4062 f 3852 g 5018 a 4070 f 4417 d 4304 e
128.5 Grain yield Advanced lines/ Varieties Fsd-08 Punjab-11 V-09082 V-09087 V-11183 V-10104 V-10355 V-11160	(kg ha 75 380 433 362 362 483 483 413 392 398 47	⁻¹) (Late Sov Seed 5 100 5 100 5 2 4167 5 3961 87 5322 50 4242 33 4702 81 4462 12 5175 18 4678	wn) rate (kg 5 5 5 5 5 5 5 5 5 5 5 5 5	ha ⁻¹) 25 2 99 4 06 4 80 4 81 3 71 4 57 3 49 4 37 4 92 4 88 4	150 -955 -640 -150 -741 -691 -831 -184 -235 -825	Mean 4747 c 4826 b 4062 f 3852 g 5018 a 4070 f 4417 d 4304 e 4976 a
128.5 Grain yield Advanced lines/ Varieties Fsd-08 Punjab-11 V-09082 V-09087 V-11183 V-10104 V-10355 V-11160 V-12001	(kg ha (kg ha 380 438 438 438 438 443 392 392 477 43	⁻¹) (Late Sov Seed 5 100 58 5065 83 5075 52 4167 25 3961 87 5322 50 4242 33 4702 81 4462 12 5175 18 4678 90 5079	$\begin{array}{c} \text{wn} \\ \hline \text{rate (kg)} \\ \hline 12 \\ 5 \\ 5 \\ 5 \\ 5 \\ 7 \\ 42 \\ 40 \\ 2 \\ 5 \\ 7 \\ 42 \\ 40 \\ 2 \\ 40 \\ 2 \\ 40 \\ 2 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	150 -955 -640 -150 -741 -691 -831 -184 -235 -825 -270	Mean 4747 c 4826 b 4062 f 3852 g 5018 a 4070 f 4417 d 4304 e 4976 a 4488 d

40.TITLE		FFECT OF DIFFERENT LEVELS OF FERTILIZER ON RAIN YIELD OF WHEAT.					
OBJECTIVES	To explore optimum	To explore optimum fertilizer requirement of advanced lines of wheat					
RESEARCH WORKER(S)	Dr.GhulamMahboobSubhani and YasirRamzan						
PROJECT DURATION	2014-15 (Continuous)						
LOCATION	Wheat Research Ins	stitute Faisal	abad.				
TREATMENTS & METHODOLOGY	(a) Varieties/advanc (b) Fertilizer level N						
	$V_2 = M$ $V_3 = V$ $V_3 = V$ $V_4 = V$ $V_5 = V$ $V_5 = V$ $V_6 = V$ $V_7 = V$ $V_8 = V$ $V_9 = V$ $V_{10} = V$ Sowing date = 2Plot sizeLine spacingLayoutRepeatsSeed rateAll other agronomisoil analysis will be	1.62 m x 5 27 cm apar Experimen with rando 03 100 kg ha c practices e done.Plant rain/spike, 10	$F_2 = 80 - 60 - 60$ $F_3 = 120 - 90 - 60$ $F_4 = 160 - 120 - 60$ nber and 10^{th} December. m t rows with 6 rows power planter. t will be Strip Plot arrangement mized complete block.				

PREVIOUS YEAR'S RESULTS	Grain yield	(kg ha ⁻¹)	Normal Sov	wn.				
	Advanced lines/		Fertilizer lev	els NPK (kgh	na ⁻¹)	Maar		
	Varieties	F1 0-0-0	F2 80-60-60	F3 120-90-60	F4 160-120-60	Mean		
	Fsd-08	3530	5432	6154	5909	5256 b		
	Millat-11	3234	4208	5298	5209	4487 f		
	V-09082	3714	4746	5511	5340	4828 de		
	V-09087	3515	4921	6008	5604	5012 c		
	V-11183	4081	5562	6409	6269	5580 a		
	V-10104	3693	5259	6111	5936	5250 b		
	V-10110	3604	4246	5561	5360	4693 e		
	V-10355	3543	4263	5782	5885	4868 cd		
	V-11160	3440	4492	5748	5494	4793 de		
	V-12001	3940	4612	5268	5425	4811 de		
	Mean	3629 d	4774 c	5785 a	5643 b			
					es =83.77, V =	$\times F = 264.9$		
	Grain yield			els NPK (kg l	na ⁻¹)			
	Advanced		1					
	lines/	F1	F2	F3	F4	M		
	Varieties Fsd-08	0-0-0 3220	80-60-60 4393	120-90-60 5178	160-120-60 4835	Mean 4407 cd		
	Millat-11	3587	4393	5185	4833	4407 cu 4500 bc		
	V-09082	3543		4571	4970			
	V-09082	3316	4390 4420	4571 4561 5300	4327	4258 ef 4125 g 4922 a 4290 de 4550 b		
	V-11183	4393	4691		4201 5302 4757 5099 5089			
	V-10104	3265	4091	4853				
	V-10110	3265	4300	5202				
	V-10355	3165	4276	5202		4390 cd		
	V-11160	3323	4503	5134	5058	4495 bc		
	V-12001	3261	4112	4705	4527	4151 fg		
	Mean	3464 d	4362 c	4972 a	4837 b	4151 Ig		
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
41.TITLE	EFFECT O YIELD OF			TION OF N	ITROGEN (ON GRAIN		
OBJECTIVES	To find out t	the suitabl	e time of spl	lit applicatior	n of nitrogen			
RESEARCH WORKER(S)		n, Dr.Ghu	lamMahboo	bSubhani and	d Dr. Makhdo	oomHussain		
PROJECT DURATION	2014-15							
LOCATION	Wheat Resea	arch Instit	ute, Faisalab	ad				
TREATMENTS & METHODOLOGY	Fertilizer l	levels N-P	P-K(kg ha ⁻¹)					

	$\mathbf{E} = 0$ 00 (0 (memiture em))							
	$F_1 = 0 - 90 - 60$ (no nitrogen)							
	F ₂ = 120 - 90- 60 (All N at sowing)							
	F_3 = 120 - 90- 60 (¹ / ₂ N at sowing and ¹ / ₂ N at ti							
	F_4 = 120 - 90- 60 (¹ / ₂ N at sowing and ¹ / ₂ N at b	ooting)						
	F_5 = 120-90- 60 (¹ / ₂ N at tillering and ¹ / ₂ N at be	ooting)						
		$F_{6=}$ 120-90- 60 (¹ / ₃ N at sowing, ¹ / ₃ N at tillering and ¹ / ₃ at booting)						
	F ₇₌ 150 - 90- 60 (All N at sowing)							
	$F_{8=150}$ - 90- 60 (¹ / ₂ N at sowing and ¹ / ₂ N at til	$F_{8=150}$ - 90- 60 (¹ / ₂ N at sowing and ¹ / ₂ N at tillering)						
	$F_{9=}$ 150 - 90- 60 (¹ / ₂ N at sowing and ¹ / ₂ N at be	-						
		$F_{9=150-90-60}$ (½ N at sowing and ½ N at booting) $F_{10=150-90-60}$ (½ N at tillering and ½ Nat booting)						
	$F_{11=}$ 150 - 90 - 60 (¹ / ₂ N at sowing, ¹ / ₃ N at		$d^{1}/_{a}$ N at					
	booting) 1^{11}	thering a	10 /3 11 at					
	(booting)							
	Veriety - Dunich 2011							
	Variety = Punjab 2011							
	Sowing time $= 1^{st}$ fortnight of November							
	Lay out = Experiment will be sown in ran							
	with 3 replications keeping plot size 1.80 m	x 7m. Nit	trogen will be					
	applied according to the treatments while P and	d K will be	applied at the					
	time of sowing. All other agronomic practices	will be kep	t constant. The					
	pre and post soil analysis will be done.							
PREVIOUS YEAR'S								
RESULT	Fertilizer levels ((kg ha ⁻¹)	2012-13	2013-14					
	N-P-K	Mean	Mean					
	$F_1 = 0 - 90 - 60$ (no nitrogen)	2726 e	3337 h					
	F ₂ = 120 - 90- 60 (All N at sowing)	4750 d	4455 g					
	F_3 = 120 - 90- 60 (¹ / ₂ N at sowing and ¹ / ₂ N at	5075 b	5703 c					
	tillering)							
	F_4 = 120 - 90- 60 (¹ / ₂ N at sowing and ¹ / ₂ N at booting)	5470 a	6430 a					
	F_5 = 120-90- 60 (½ N at tillering and ½ N at booting)	4972 bc	5051 e					
	F_6 = 120-90- 60 (1/3 N at sowing, 1/3 N at tillering	4921 bc	00010					
	and 1/3 at booting)		5281 d					
		4500.1	5281 d					
	F ₇ = 150 - 90- 60 (All N at sowing)	4733 d	5281 d 4633 f					
	F_7 = 150 - 90- 60 (All N at sowing) F_8 =150 - 90- 60 (½ N at sowing and ½ N at tillering)	4955 bc	5281 d 4633 f 5679 c					
	F_7 = 150 - 90- 60 (All N at sowing) F_8 =150 - 90- 60 (½ N at sowing and ½ N at tillering) F_9 = 150 - 90- 60 (½ N at sowing and ½ N at booting)	4955 bc 5007 bc	5281 d 4633 f 5679 c 6087 b					
	$\begin{array}{c} F_{7} = 150 - 90 - 60 \; (\text{All N at sowing}) \\ \hline F_{8} = 150 - 90 - 60 \; (\frac{1}{2} \; \text{N at sowing and } \frac{1}{2} \; \text{N at tillering}) \\ \hline F_{9} = 150 - 90 - 60 \; (\frac{1}{2} \; \text{N at sowing and } \frac{1}{2} \; \text{N at booting}) \\ \hline F_{10} = 150 - 90 - 60 \; (\frac{1}{2} \; \text{N at tillering and } \frac{1}{2} \; \text{Nat} \end{array}$	4955 bc	5281 d 4633 f 5679 c					
	F_7 = 150 - 90- 60 (All N at sowing) F_8 =150 - 90- 60 (½ N at sowing and ½ N at tillering) F_9 = 150 - 90- 60 (½ N at sowing and ½ N at booting) F_{10} = 150 - 90- 60 (½ N at tillering and ½ N at booting) F_{10} = 150 - 90- 60 (½ N at tillering and ½ N at booting)	4955 bc 5007 bc 5007 bc	5281 d 4633 f 5679 c 6087 b 5967 b					
	$\begin{array}{c} F_{7} = 150 - 90 - 60 \ (\text{All N at sowing}) \\ \hline F_{8} = 150 - 90 - 60 \ (\frac{1}{2} \ \text{N at sowing and } \frac{1}{2} \ \text{N at tillering}) \\ \hline F_{9} = 150 - 90 - 60 \ (\frac{1}{2} \ \text{N at sowing and } \frac{1}{2} \ \text{N at booting}) \\ \hline F_{10} = 150 - 90 - 60 \ (\frac{1}{2} \ \text{N at tillering and } \frac{1}{2} \ \text{Nat booting}) \\ \hline F_{11} = 150 - 90 - 60 \ (1/3 \ \text{N at sowing, } 1/3 \ \text{N at tillering}) \\ \hline \end{array}$	4955 bc 5007 bc	5281 d 4633 f 5679 c 6087 b					
	F_7 = 150 - 90- 60 (All N at sowing) F_8 =150 - 90- 60 (½ N at sowing and ½ N at tillering) F_9 = 150 - 90- 60 (½ N at sowing and ½ N at booting) F_{10} = 150 - 90- 60 (½ N at tillering and ½ N at booting) F_{10} = 150 - 90- 60 (½ N at tillering and ½ N at booting)	4955 bc 5007 bc 5007 bc	5281 d 4633 f 5679 c 6087 b 5967 b					

42.T	ITI	E

WATER REQUIREMENT AND ITS TIME OF APPLICATON TO FETCH MAXIMUM WHEAT GRAIN YIELD

OBJECTIVES	To determine the proper stage of crop and optimum requirement of water for yield enhancement.					
RESEARCH WORKER(S)	Dr.GhulamMahboobSubhani, YasirRamzan and Dr. MakhdoomHussain					
PROJECT DURATION	2014-15					
LOCATION	Wheat Research Institute, Faisalabad; C & P, AA	RI, Faisala	ıbad			
TREATMENTS & METHODOLOGY	Treatment					
	$T_1 = no irrigation$					
	$T_2 = 1$ irrigation (at crown root stage)					
	T_3 = 2 irrigations (1 st at crown root and 2 nd at boo	oting)				
	$T_4=2$ irrigations (1 st at crown root and 2 nd at heat	ding)				
	$T_5=3$ irrigations (1 st at crown root, 2 nd at booting					
	and 3^{rd} at heading)					
	$T_6 = 4$ irrigations (1 st at crown root, 2 nd at boot	ting, 3 rd at	heading			
	and 4 th at grain filling)					
	$T_7 = 5$ irrigations (1 st at crown root, 2 nd at sten	n elongatic	on, 3 rd at			
	booting, 4 th at heading and 5 th at grain filling)	U				
	Variety: Millat-11					
	Sowing time $= 1^{st}$ fortnight of November					
	Sowing time $= 1^{st}$ fortnight of November Seed Rate : 100 kg ha ⁻¹					
	Seed Rate : 100 kg ha ⁻¹	nized com	plete block			
	Seed Rate: 100 kg ha^{-1} Lay out = Experiment will be sown in random	nized com ize of 4.8	nplete block 36m x 8m.			
	Seed Rate: 100 kg ha^{-1} Lay out = Experiment will be sown in random	nized com ize of 4.8 e applied	nplete block 36m x 8m. . All other			
	Seed Rate : 100 kg ha ⁻¹	nized com ize of 4.8 e applied	nplete block 36m x 8m. . All other			
	Seed Rate: 100 kg ha^{-1} Lay out = Experiment will be sown in randor design with three replications keeping plot si Fertilizer @ 120-90-60 NPK kg ha ⁻¹ will b agronomic practices will be kept constant.	nized com ize of 4.8 e applied	nplete block 36m x 8m. . All other			
PREVIOUS YEAR'S	Seed Rate: 100 kg ha^{-1} Lay out = Experiment will be sown in randor design with three replications keeping plot si Fertilizer @ 120-90-60 NPK kg ha ⁻¹ will b agronomic practices will be kept constant.	nized com ize of 4.8 e applied	nplete block 36m x 8m. . All other			
PREVIOUS YEAR'S RESULT	Seed Rate: 100 kg ha^{-1} Lay out = Experiment will be sown in randor design with three replications keeping plot si Fertilizer @ 120-90-60 NPK kg ha ⁻¹ will b agronomic practices will be kept constant.	ize of 4.8 e applied 2012-13	nplete block 36m x 8m. . All other 2013-14			
	Seed Rate: 100 kg ha ⁻¹ Lay out = Experiment will be sown in randor design with three replications keeping plot si Fertilizer @ 120-90-60 NPK kg ha ⁻¹ will b agronomic practices will be kept constant. Treatments	ize of 4.8 e applied 2012-13 Mean	36m x 8m. . All other 2013-14 Mean			
	Seed Rate: 100 kg ha ⁻¹ Lay out = Experiment will be sown in randor design with three replications keeping plot si Fertilizer @ 120-90-60 NPK kg ha ⁻¹ will b agronomic practices will be kept constant. Treatments $T_1 = no irrigation$	ize of 4.8 e applied 2012-13 <u>Mean</u> 2744 d	86m x 8m. All other 2013-14 Mean 3000 f			
	Seed Rate: 100 kg ha ⁻¹ Lay out = Experiment will be sown in random design with three replications keeping plot similation Fertilizer @ 120-90-60 NPK kg ha ⁻¹ will be agronomic practices will be kept constant. Treatments $T_1 = no$ irrigation $T_2 = 1$ irrigation (at crown root stage)	ize of 4.8 e applied 2012-13 Mean 2744 d 4235 b	 36m x 8m. All other 2013-14 Mean 3000 f 4770 b 			
	Seed Rate: 100 kg ha ⁻¹ Lay out = Experiment will be sown in randordesign with three replications keeping plot stFertilizer @ 120-90-60 NPK kg ha ⁻¹ will bagronomic practices will be kept constant.Treatments $T_1 = no$ irrigation $T_2 = 1$ irrigation (at crown root stage) $T_3 = 1$ irrigation (at booting stage)	ize of 4.8 e applied 2012-13 Mean 2744 d 4235 b 4098 bc	86m x 8m. . All other 2013-14 Mean 3000 f 4770 b 3670 e			
	Seed Rate: 100 kg ha ⁻¹ Lay out = Experiment will be sown in randordesign with three replications keeping plot siFertilizer @ 120-90-60 NPK kg ha ⁻¹ will bagronomic practices will be kept constant.Treatments $T_1 = no$ irrigation $T_2 = 1$ irrigation (at crown root stage) $T_3 = 1$ irrigation (at booting stage) $T_4 = 1$ irrigation (at heading)	ize of 4.8 e applied 2012-13 Mean 2744 d 4235 b 4098 bc 3985 c	86m x 8m. All other 2013-14 Mean 3000 f 4770 b 3670 e 3556 e			
	Seed Rate: 100 kg ha ⁻¹ Lay out = Experiment will be sown in randordesign with three replications keeping plot siFertilizer @ 120-90-60 NPK kg ha ⁻¹ will bagronomic practices will be kept constant.Treatments $T_1 = no$ irrigation $T_2 = 1$ irrigation (at crown root stage) $T_3 = 1$ irrigation (at booting stage) $T_4 = 1$ irrigations (1st at crown root and 2nd at	ize of 4.8 e applied 2012-13 Mean 2744 d 4235 b 4098 bc	86m x 8m. . All other 2013-14 Mean 3000 f 4770 b 3670 e			
	Seed Rate: 100 kg ha ⁻¹ Lay out = Experiment will be sown in randordesign with three replications keeping plot soFertilizer @ 120-90-60 NPK kg ha ⁻¹ will beagronomic practices will be kept constant.Treatments $T_1 = no$ irrigation $T_2 = 1$ irrigation (at crown root stage) $T_3 = 1$ irrigation (at booting stage) $T_4 = 1$ irrigation (at heading) $T_5 = 2$ irrigations (1st at crown root and 2nd at booting)	ize of 4.8 e applied 2012-13 Mean 2744 d 4235 b 4098 bc 3985 c 4510 a	2013-14 Mean 3000 f 4770 b 3670 e 3556 e 4469 c			
	Seed Rate: 100 kg ha ⁻¹ Lay out = Experiment will be sown in randordesign with three replications keeping plot stFertilizer @ 120-90-60 NPK kg ha ⁻¹ will bagronomic practices will be kept constant.Treatments $T_1 = no$ irrigation $T_2 = 1$ irrigation (at crown root stage) $T_3 = 1$ irrigation (at booting stage) $T_4 = 1$ irrigation (at heading) $T_5 = 2$ irrigations (1st at crown root and 2nd at booting) $T_6 = 2$ irrigations (1st at crown root and 2nd at booting)	ize of 4.8 e applied 2012-13 Mean 2744 d 4235 b 4098 bc 3985 c	86m x 8m. All other 2013-14 Mean 3000 f 4770 b 3670 e 3556 e			
	Seed Rate: 100 kg ha ⁻¹ Lay out = Experiment will be sown in randor design with three replications keeping plot si Fertilizer @ 120-90-60 NPK kg ha ⁻¹ will b agronomic practices will be kept constant.Treatments $T_1 = no$ irrigation $T_2 = 1$ irrigation (at crown root stage) $T_3 = 1$ irrigation (at booting stage) $T_4 = 1$ irrigation (at heading) $T_5 = 2$ irrigations (1st at crown root and 2nd at booting) $T_6 = 2$ irrigations (1st at crown root and 2nd at heading)	ize of 4.8 e applied 2012-13 Mean 2744 d 4235 b 4098 bc 3985 c 4510 a 4167 b	2013-14 Mean 3000 f 4770 b 3670 e 3556 e 4469 c 4307 c			
	Seed Rate: 100 kg ha ⁻¹ Lay out = Experiment will be sown in randordesign with three replications keeping plot siFertilizer @ 120-90-60 NPK kg ha ⁻¹ will bagronomic practices will be kept constant.Treatments $T_1 = no$ irrigation $T_2 = 1$ irrigation (at crown root stage) $T_3 = 1$ irrigation (at booting stage) $T_4 = 1$ irrigations (1st at crown root and 2nd at booting) $T_6 = 2$ irrigations (1st at crown root and 2nd at heading) $T_7 = 2$ irrigations (1st at booting and 2nd at heading)	ize of 4.8 e applied 2012-13 Mean 2744 d 4235 b 4098 bc 3985 c 4510 a	2013-14 Mean 3000 f 4770 b 3670 e 3556 e 4469 c			
	Seed Rate: 100 kg ha ⁻¹ Lay out = Experiment will be sown in randor design with three replications keeping plot so Fertilizer @ 120-90-60 NPK kg ha ⁻¹ will b agronomic practices will be kept constant. Treatments $T_1 = no$ irrigation $T_2 = 1$ irrigation (at crown root stage) $T_3 = 1$ irrigation (at booting stage) $T_4 = 1$ irrigation (at heading) $T_5 = 2$ irrigations (1st at crown root and 2nd at booting) $T_6 = 2$ irrigations (1st at crown root and 2nd at heading) $T_7 = 2$ irrigations (1st at booting and 2nd at heading) $T_7 = 2$ irrigations (1st at booting and 2nd at heading)	ize of 4.8 e applied 2012-13 Mean 2744 d 4235 b 4098 bc 3985 c 4510 a 4167 b 4115 bc	36m x 8m. All other 2013-14 Mean 3000 f 4770 b 3670 e 3556 e 4469 c 4307 c 4057 d			
	Seed Rate: 100 kg ha ⁻¹ Lay out = Experiment will be sown in randor design with three replications keeping plot si Fertilizer @ 120-90-60 NPK kg ha ⁻¹ will b agronomic practices will be kept constant. Treatments $T_1 = no$ irrigation $T_2 = 1$ irrigation (at crown root stage) $T_3 = 1$ irrigation (at booting stage) $T_4 = 1$ irrigation (at heading) $T_5 = 2$ irrigations (1st at crown root and 2nd at booting) $T_6 = 2$ irrigations (1st at crown root and 2nd at heading) $T_7 = 2$ irrigations (1st at crown root, 2nd at booting $T_8 = 3$ irrigations (1st at crown root, 2nd at booting	ize of 4.8 e applied 2012-13 Mean 2744 d 4235 b 4098 bc 3985 c 4510 a 4167 b	2013-14 Mean 3000 f 4770 b 3670 e 3556 e 4469 c 4307 c			
	Seed Rate: 100 kg ha ⁻¹ Lay out = Experiment will be sown in randor design with three replications keeping plot si Fertilizer @ 120-90-60 NPK kg ha ⁻¹ will b agronomic practices will be kept constant. Treatments $T_1 = no$ irrigation $T_2 = 1$ irrigation (at crown root stage) $T_3 = 1$ irrigation (at booting stage) $T_4 = 1$ irrigation (at heading) $T_5 = 2$ irrigations (1st at crown root and 2nd at booting) $T_6 = 2$ irrigations (1st at crown root and 2nd at heading) $T_7 = 2$ irrigations (1st at crown root, 2nd at booting and 3rd at heading) $T_9 = 4$ irrigations (1st at crown root, 2nd at booting,	ize of 4.8 e applied 2012-13 Mean 2744 d 4235 b 4098 bc 3985 c 4510 a 4167 b 4115 bc	36m x 8m. All other 2013-14 Mean 3000 f 4770 b 3670 e 3556 e 4469 c 4307 c 4057 d			
	Seed Rate: 100 kg ha ⁻¹ Lay out = Experiment will be sown in randor design with three replications keeping plot si Fertilizer @ 120-90-60 NPK kg ha ⁻¹ will b agronomic practices will be kept constant. Treatments $T_1 = no$ irrigation $T_2 = 1$ irrigation (at crown root stage) $T_3 = 1$ irrigation (at booting stage) $T_4 = 1$ irrigation (at heading) $T_5 = 2$ irrigations (1st at crown root and 2nd at booting) $T_6 = 2$ irrigations (1st at crown root and 2nd at heading) $T_7 = 2$ irrigations (1st at crown root, 2nd at booting and 3rd at heading) $T_9 = 4$ irrigations (1st at crown root, 2nd at booting, 3rd at heading and 4th at grain filling)	ize of 4.8 e applied 2012-13 Mean 2744 d 4235 b 4098 bc 3985 c 4510 a 4167 b 4115 bc 4407 a 4475 a	36m x 8m. All other 2013-14 Mean 3000 f 4770 b 3670 e 3556 e 4469 c 4307 c 4057 d 4996 a 4880 ab			
	Seed Rate: 100 kg ha ⁻¹ Lay out = Experiment will be sown in randor design with three replications keeping plot si Fertilizer @ 120-90-60 NPK kg ha ⁻¹ will b agronomic practices will be kept constant. Treatments $T_1 = no$ irrigation $T_2 = 1$ irrigation (at crown root stage) $T_3 = 1$ irrigation (at booting stage) $T_4 = 1$ irrigation (at heading) $T_5 = 2$ irrigations (1st at crown root and 2nd at booting) $T_6 = 2$ irrigations (1st at crown root and 2nd at heading) $T_7 = 2$ irrigations (1st at crown root, 2nd at booting and 3rd at heading) $T_9 = 4$ irrigations (1st at crown root, 2nd at booting,	ize of 4.8 e applied 2012-13 Mean 2744 d 4235 b 4098 bc 3985 c 4510 a 4167 b 4115 bc 4407 a	2013-14 Mean 3000 f 4770 b 3670 e 3556 e 4469 c 4307 c 4057 d 4996 a			

WHEAT ENTOMOLOGY

43.TITLE	VARIETAL SCREENING OF WHEAT AGAINST APHIDS AND THEIR INTERACTION WITH PREDATORS.
OBJECTIVES	i. To evaluate the wheat varieties /advanced lines against aphids.ii. To determine correlation between aphid and predators.
RESEARCH	Muhammad Saleem, Dr. MakhdoomHussain Wheat Research Institute,
WORKER(S)	Muhammad Latif, Entomological Research Institute, Faisalabad
PROJECT	2014-15 (Continuous nature)
DURATION	
LOCATION	Wheat Research Institute, Faisalabad.
TREATMENTS &	The trial will be conducted in RCB Design having 3 repeats with plot
METHODOLOGY	size 5m x 1.8m. The data regarding aphids, <i>Coccinellids, chrysoperla and syrphid</i> fly will be recorded during the month of march, 2015 till

olant in whe	at crop is as u	1	occinellids) per tille	r and
Sr#	Varieties	Average aphid population per tiller	Predators (<i>Coccinellids</i> beetle) /plant	
1	FSD-08	7.10ef	0.30 ef	
2	Millat-11	6.40 f	0.333 ef	
3	Galaxy-13	8.70bcdef	0.40 def	
4	V-08203	10.433 abcd	0.733 abc	
5	V-09087	8.367 cdef	0.5667 bcde	
6	V-10104	11.633ab	0.50 cde	
7	V-10110	11.433abc	0.867 a	
8	V-10355	8.6 bcdef	0.3667 ef	
9	V-11160	8.50cdef	0.433 def	
10	NR-397	9.533 bcde	0.667 abcd	
11	V-12001	13.333 a	0.8333 ab	
12	V-11183	6.667 ef	0.1667 f	
LSD	Value	3.1143	0.2798	
	$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ \end{array} $	1 FSD-08 2 Millat-11 3 Galaxy-13 4 V-08203 5 V-09087 6 V-10104 7 V-10110 8 V-10355 9 V-11160 10 NR-397 11 V-12001	population per tiller 1 FSD-08 7.10ef 2 Millat-11 6.40 f 3 Galaxy-13 8.70bcdef 4 V-08203 10.433 abcd 5 V-09087 8.367 cdef 6 V-10104 11.633ab 7 V-10110 11.433abc 8 V-10355 8.6 bcdef 9 V-11160 8.50cdef 10 NR-397 9.533 bcde 11 V-12001 13.333 a 12 V-11183 6.667 ef	population per tiller (Coccinellids beetle)/plant 1 FSD-08 7.10ef 0.30 ef 2 Millat-11 6.40 f 0.333 ef 3 Galaxy-13 8.70bcdef 0.40 def 4 V-08203 10.433 abcd 0.733 abc 5 V-09087 8.367 cdef 0.5667 bcde 6 V-10104 11.633ab 0.50 cde 7 V-10110 11.433abc 0.867 a 8 V-10355 8.6 bcdef 0.3667 ef 9 V-11160 8.50cdef 0.433 def 10 NR-397 9.533 bcde 0.667 abcd 11 V-12001 13.333 a 0.8333 ab 12 V-11183 6.667 ef 0.1667 f

44.TITLE	SCREENING OF WHEAT GERMPLASM AGAINST APHIDS
OBJECTIVES	To find out resistant/ tolerant varieties/lines against aphid attack.
RESEARCH WORKER(S)	Muhammad Saleem and Dr. MakhdoomHussain
PROJECT DURATION	2014-15 (Continuous nature)
LOCATION	Wheat Research Institute, Faisalabad.
TREATMENTS & METHODOLOGY	The data will be recorded on 10 days interval from 10 randomly selected tillers on each lines/variety especially during the month of March,2015.

PREVIOUS YEAR'S RESULTS	Average aphid population pertiller on wheat germplasm.							
	Material	Total Entries	Ave	rage aphid variet	populatior y/line (Mea	-	on each	
	Crossing		0-5	5.1-25	25-35	35-45	45.1-100	
	block 13-14	468	04*	186	92	83	83	
	Reactions		Т	MT	MS	S	HS	
	T=Tolerant, S= Susceptil *Kohistan-9	ole, HS= Hi	ighly Sus	ceptible		usceptible,	1	

45.TITLE	SURVEY OF APHID POPULATION ON WHEAT CROP
OBJECTIVES	To find out the occurrence and fluctuation of aphids population on wheat crop in different ecological zones of the Punjab
RESEARCH WORKER(S)	Muhammad Saleem and Dr. MakhdoomHussain
PROJECT DURATION	2014-15 (Continuous nature)
LOCATION	Faisalabad, Jhang, Sialkot, Bahawalnagar, Sarghoda ,Khanawal, Vehari, Sahiwal, Narowal, Seikhupura etc.
TREATMENTS & METHODOLOGY	Aphid population and their predators will be recorded from different wheat varieties sown in different ecological zones per tiller per plant basis, respectively. The data will be recorded during the month of February and March, 2015.
PREVIOUS YEAR'S RESULTS	The results showed that aphid and coccinellid population in the different areas of the Punjab was found in the range 3.0 to 29.0/tiller and 0.0 to 0.98 per plant, respectively on different wheat varieties in different areas. While regarding wheat varietal behavior aphid and coccinellid population remained in the range 6-26, 5-16,5-14,3-6,7-13,6-13,9-13,9-29,5-17 and 8-12 per tiller and 0-0.98,0- 0.82,0-0.83,0.05-0.52,0.22-0.73,0.1-0.91,0.12-0.82,0.19-0.63,0-0.67and 0.12-0.68 per plant, respectively on Seher-06, Fsd-08, Lasani-08, Galaxy-13, Inqlab-91, Punjab-11,AAS-13,Bhakar 2000, Millat-11 and Wattan. So aphid population was recorded more in Lahore area followed by Kasure, Okara and Faisalabad, than the other areas. Similarly coccinellid beetles were found more where aphid population was more. Wheat variety Galaxy-13 showed least preference to aphid than others.

SEED PRODUCTION

46.TITLE	PRODUCTION OF BREEDERS NUCLEUS SEED OF WHEAT ADVANCED LINES AND VARIETIES.
OBJECTIVES	i. To maintain the true to type seed of bread/durum wheat varieties.ii. To obtain the phenotypic stability of advanced wheat lines.
RESEARCH WORKER(S)	Javed Anwar and Muhammad HammadTanveer
PROJECT DURATION	2014-15 (continuous)
LOCATION	Wheat Research Institute, Faisalabad.

TREATMENTS & METHODOLOGY	planted in will be ob deviating head rows	ngle heads of all 2.5 meters long oserved at differe from the original s will be harvested progenies.	row. Hea ent stages variety w	d rows of of plan vill be di	of each comme t development scarded. Unifo	ercial variety . Head rows orm vigorous
	Sr. #	Varieties	Sr. #	Va	rieties	7
	1.	Punjab-11	10		1183	-
	2.	Millat-11	11			-
	3.	AARI-11	12			
	4.	Faisalabad-08	13			_
	5.	Lasani-08	14			_
	6.	Pasban-90	15			
	7.	Uqab-2000	16			
	8.	Galaxy-13	17			
	9	V-08203	18			
RESULTS		0 to 200 head row				
		kept for head rov is as under,		y studies		
		is as under, Varieties/	No. of	y studies	Varieties/	No. of
	The detail	is as under, Varieties/ lines	No. of heads	Sr. #	Varieties/ lines	heads
	The detail Sr. # 1.	is as under, Varieties/ lines Punjab-11	No. of heads 160	Sr. # 19.	Varieties/ lines V-11047	heads 10
	The detail Sr. # 1. 2.	is as under, Varieties/ lines Punjab-11 Millat-11	No. of heads 160 160	Sr. # 19. 20.	Varieties/ lines V-11047 V-11138	heads 10 10
	Sr. # 1. 2. 3.	is as under, Varieties/ lines Punjab-11 Millat-11 AARI-11	No. of heads 160 160 40	Sr. # 19. 20. 21.	Varieties/ lines V-11047 V-11138 V-11143	heads 10 10 10
	Sr. # 1. 2. 3. 4.	is as under, Varieties/ lines Punjab-11 Millat-11 AARI-11 Faisalabad-08	No. of heads 160 160 40 80	Sr. # 19. 20. 21. 22.	Varieties/ lines V-11047 V-11138 V-11143 V-12284	heads 10 10 10 10 10
	Sr. # 1. 2. 3.	is as under, Varieties/ lines Punjab-11 Millat-11 AARI-11	No. of heads 160 160 40	Sr. # 19. 20. 21.	Varieties/ lines V-11047 V-11138 V-11143	heads 10 10 10
	Sr. # 1. 2. 3. 4. 5.	is as under, Varieties/ lines Punjab-11 Millat-11 AARI-11 Faisalabad-08 Lasani-08	No. of heads 160 160 40 80 40	Sr. # 19. 20. 21. 22. 23.	Varieties/ lines V-11047 V-11138 V-11143 V-12284 V-12275	heads 10 10 10 10 10 10 10 10
	The detail Sr. # 1. 2. 3. 4. 5. 6.	is as under, Varieties/ lines Punjab-11 Millat-11 AARI-11 Faisalabad-08 Lasani-08 Pasban-90	No. of heads 160 160 40 80 40 40	Sr. # 19. 20. 21. 22. 23. 24.	Varieties/ lines V-11047 V-11138 V-11143 V-12284 V-12275 V-12257	heads 10 10 10 10 10 10 10 10 10 10
	Sr. # 1. 2. 3. 4. 5. 6. 7.	is as under, Varieties/ lines Punjab-11 Millat-11 AARI-11 Faisalabad-08 Lasani-08 Pasban-90 Uqab-2000	No. of heads 160 40 80 40 40 40 40	Sr. # 19. 20. 21. 22. 23. 24. 25.	Varieties/ lines V-11047 V-11138 V-11143 V-12284 V-12275 V-12257 V-12266	heads 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
	Sr. # 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	is as under, Varieties/ lines Punjab-11 Millat-11 AARI-11 Faisalabad-08 Lasani-08 Pasban-90 Uqab-2000 Galaxy-13 V-08203 V-09082	No. of heads 160 40 40 40 160 100	Sr. # 19. 20. 21. 22. 23. 24. 25. 26. 27. 28.	Varieties/ lines V-11047 V-11138 V-11143 V-12284 V-12275 V-12257 V-12266 V-12265 V-12304 V-12252	heads 10
	Sr. # 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.	is as under, Varieties/ lines Punjab-11 Millat-11 AARI-11 Faisalabad-08 Lasani-08 Pasban-90 Uqab-2000 Galaxy-13 V-08203 V-09082 V-09087	No. of heads 160 160 40 40 40 40 40 160 160 160 10 10	Sr. # 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29.	Varieties/ lines V-11047 V-11138 V-11143 V-12284 V-12275 V-12257 V-12266 V-12265 V-12265 V-12252 V-12252 V-12253	heads 10
	Sr. # 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.	is as under, Varieties/ lines Punjab-11 Millat-11 AARI-11 Faisalabad-08 Lasani-08 Pasban-90 Uqab-2000 Galaxy-13 V-08203 V-09082 V-09087 V-11022	No. of heads 160 40 40 40 40 40 160 160 160 160 10 10 10	Sr. # 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30.	Varieties/ lines V-11047 V-11138 V-11143 V-12284 V-12275 V-12257 V-12266 V-12265 V-12265 V-12304 V-12252 V-12253 V-12292	heads 10
	Sr. # 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.	is as under, Varieties/ lines Punjab-11 Millat-11 AARI-11 Faisalabad-08 Lasani-08 Pasban-90 Uqab-2000 Galaxy-13 V-08203 V-09082 V-09087	No. of heads 160 160 40 40 40 40 40 160 160 160 10 10	Sr. # 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29.	Varieties/ lines V-11047 V-11138 V-11143 V-12284 V-12275 V-12257 V-12266 V-12265 V-12265 V-12252 V-12252 V-12253	heads 10

	1	~ X7	11001	10	2	2		
			11091	10		3.		
			11098	10		4.		
			11137	10		5.		
		8. V-	11061	10	3	6.		
	DDE	DACIC	SEED DDC	DUC		OF		
47.TITLE			SEED PRC LTIVARS &			-		ND DURUN
	WIL				ANCE	D LI	INES.	
OBJECTIVES	Ton	roduce	pure seed of	of cor	nmerci	al w	heat cultive	ars/ lines fo
ODJECTIVES	-		he Punjab Se					
	suppi	ying to ti	lie i unjub be		porutio	ii uit		a companie
RESEARCH	Javed	Anwar a	and Muhamn	nad Ha	mmaď	Fanve	er	
WORKER(S)								
PROJECT	2014-	15 (cont	inuous nature	e)				
DURATION				*				
LOCATION	Whea	t Resear	ch Institute, H	Faisala	bad.			
TREATMENTS &	Two t	to four k	anals of the	follow	ing cul	tivar	s/lines will t	be sown usin
METHODOLOGY	seeds	of selec	ted head rov	vs for	head r	ow p	rogeny. Eac	h single hea
	row p	rogeny v	vill be plante	d 24m	x 1.65	m an	d field will b	e inspected a
			will be plante es of plant gro		x 1.65	m an	d field will b	be inspected a
		ent stage	es of plant gro					be inspected a
		ent stage S. No.	vs of plant gro		S. No.		nrieties	
		ent stage S. No. 1.	s of plant gro Varieties Punjab-11		S. No. 8.		ırieties Galaxy-1	3
		ent stage S. No. 1. 2.	Varieties Varieties Punjab-11 Millat-11		S. No. 8. 9.		nrieties	3
		S. No. 1. 2. 3.	Varieties Varieties Punjab-11 Millat-11 AARI-11	owth.	S. No. 8. 9. 10.		ırieties Galaxy-1	3
		S. No. 1. 2. 3. 4.	Varieties Punjab-11 Millat-11 AARI-11 Faisalabad	owth.	S. No. 8. 9. 10. 11.		ırieties Galaxy-1	3
		S. No. 1. 2. 3. 4. 5.	Varieties Punjab-11 Millat-11 AARI-11 Faisalabad Lasani-08	-08	S. No. 8. 9. 10. 11. 12.		ırieties Galaxy-1	3
		S. No. 1. 2. 3. 4. 5. 6.	Varieties Punjab-11 Millat-11 AARI-11 Faisalabad Lasani-08 Uqab-2000	owth.	S. No. 8. 9. 10. 11. 12. 13.		ırieties Galaxy-1	3
		S. No. 1. 2. 3. 4. 5.	Varieties Punjab-11 Millat-11 AARI-11 Faisalabad Lasani-08	owth.	S. No. 8. 9. 10. 11. 12.		ırieties Galaxy-1	3
PREVIOUS YEAR' S	differe	S. No. 1. 2. 3. 4. 5. 6. 7.	Varieties Punjab-11 Millat-11 AARI-11 Faisalabad Lasani-08 Uqab-2000) with.	S. No. 8. 9. 10. 11. 12. 13. 14.		urieties Galaxy-1 V-08203	3
PREVIOUS YEAR' S RESULTS	differe	S. No. 1. 2. 3. 4. 5. 6. 7.	Varieties Punjab-11 Millat-11 AARI-11 Faisalabad Lasani-08 Uqab-2000 Pasban-90) with.	S. No. 8. 9. 10. 11. 12. 13. 14.		urieties Galaxy-1 V-08203	3
	differe The se	S. No. 1. 2. 3. 4. 5. 6. 7. eed of fo	Varieties Punjab-11 Millat-11 AARI-11 Faisalabad Lasani-08 Uqab-2000 Pasban-90) with.	S. No. 8. 9. 10. 11. 12. 13. 14. nes wa	S proc	urieties Galaxy-1 V-08203	3
	differe The se	S. No. 1. 2. 3. 4. 5. 6. 7. eed of fo r. # Va	Varieties Punjab-11 Millat-11 AARI-11 Faisalabad Lasani-08 Uqab-2000 Pasban-90	owth.	S. No. 8. 9. 10. 11. 12. 13. 14. nes was g Sr	va s proc	urieties Galaxy-1 V-08203	3
	differe The se	S. No. 1. 2. 3. 4. 5. 6. 7. eed of fo r. # Va Fa	Varieties Punjab-11 Millat-11 AARI-11 Faisalabad Lasani-08 Uqab-2000 Pasban-90 Ilowing varie	owth.	S. No. 8. 9. 10. 11. 12. 13. 14. nes was g Sr 5 6.	Va	Galaxy-1 V-08203	3
	The set	S. No. 1. 2. 3. 4. 5. 6. 7. eed of fo r. # Value Fa . Fa	Varieties Punjab-11 Millat-11 AARI-11 Faisalabad Lasani-08 Uqab-2000 Pasban-90 Illowing varie sialabad-08	owth.	S. No. 8. 9. 10. 11. 12. 13. 14. nes was g Sr 5 6. 0. 7.	S proc	duced Varieties Punjab-11	3 5 6 6 95
	The set	S. No. 1. 2. 3. 4. 5. 6. 7. eed of fo r. # V Fa La A.	Varieties Punjab-11 Millat-11 AARI-11 Faisalabad Lasani-08 Uqab-2000 Pasban-90 Illowing varies isalabad-08 sani-08	wth.	S. No. 8. 9. 10. 11. 12. 13. 14. nes was g Sr 5. 6. 0. 7. 0. 8.	Ve	duced Varieties Punjab-11 Galaxy-13	3 3 3 5 5 5 5 5 700
	The set Strategy of the set of th	S. No. 1. 2. 3. 4. 5. 6. 7. eed of fo r. # Va Fa La AA Pa	Varieties Punjab-11 Millat-11 AARI-11 Faisalabad Lasani-08 Uqab-2000 Pasban-90 Illowing varieties isalabad-08 sani-08 ARI-11	wth.	S. No. 8. 9. 10. 11. 12. 13. 14. nes was 5 6. 0. 7. 0. 8. 0. 8. 0. 9.	S proc	duced Varieties Punjab-11 Galaxy-13 V-11183	3 3 5 5 5 5 5 5 5 5 5 5 5 5 5
	differe The so 1. 2. 3. 4.	S. No. 1. 2. 3. 4. 5. 6. 7. eed of fo r. # Va Fa La AA Pa	Varieties Punjab-11 Millat-11 AARI-11 Faisalabad Lasani-08 Uqab-2000 Pasban-90 Illowing varies isalabad-08 sani-08 ARI-11 sban-90	owth. -08 -08 -08 -08 -08 -08 -08 -08	S. No. 8. 9. 10. 11. 12. 13. 14. nes was 5 6. 0. 7. 0. 8. 0. 8. 0. 9.	S proc	duced Varieties Punjab-11 Galaxy-13 V-11183	3 3 5 5 5 5 5 5 5 5 5 5 5 5 5

48.TITLE	SEED PRODUCTION OF BREAD AND DURUM WHEAT CULTIVARS AND ADVANCED LINES.
OBJECTIVES	To produce pure seed of commercial wheat cultivars/lines for farmers
RESEARCH	Dr. Muhammad Munir, Javed Anwar and Muhammad

WORKER(S)	HammadTanveer						
PROJECT DURATION	2014-15 (continuous nature)						
LOCATION	Wheat Research Institute, Faisalabad.						
TREATMENTS & METHODOLOGY	One to fo	our acres	of the fol	lowing	cultivars	will be sown:	
		Sr. #.	Variet	ies	Sr. #	Varieties	
		1.	Punjab	-11	7.	Pasban-90	
		2.	Millat-	11	8.	Galaxy-13	
		3.	AARI-	11	9.	V-08203	
		4.	Faisalaba	1d-08	10.		
		5.	Lasani	-08	11		
		6.	Uqab -2	000	12		
			<u> </u>				
PREVIOUS YEAR' S RESULTS	The seed	of follow	wing variet	ies/line:	s was proo	duced:	
	Sr. #	Va	rieties	Kg	Sr. #	Varieties	Kg
	1.	Faisa	labad-08	3700	6.	AARI-11	1000
	2.	Las	ani-08	2400	7.	Galaxy-13	15000
	3.	Pur	njab-11	3800	8.	V-08203	2500
	4.	Mi	llat-11	4200	9.	V-11183	1200
	5.	Pas	ban-90	1300	10.		

CEREAL TECHNOLOGY

49. TITLE	EFFECT OF ZINC FORTIFICATION ON PHYSICO- CHEMICAL PROPERTIES OF WHOLE WHEAT FLOUR
OBJECTIVES	To determine the effect of Zinc fortification on properties of whole wheat flour.
RESEARCH WORKERS	Dr. Muhammad Abrar and Dr. MakhdoomHussain
PROJECT DURATION	2012-14
LOCATION	Wheat Research Institute, Faisalabad.
TREATMENTS & METHODOLOGY	ZnSO ₄ @5, 10, 15 and 20mg kg ⁻¹ will be added in whole wheat flour made from Millat-11 along with control and stored at ambient temperature for 60 days Flourquality parameters i.e. crude protein (through kjeltech), ash (through muffle furnace), color (through colorimeter), Zinc content, Alpha amylase activity (through falling no. apparatus), gluten content (through glutamatic) and chapatti quality will be evaluated at 0, 15, 30, 45 and 60 days of storage.
PREVIOUS YEAR'S RESULTS	ZnSO ₄ was added in flour of wheat variety Millat-11 @ 5,10,15 and 20 mg kg ⁻¹ flour and stored at ambient temperature. Fortified flour was subjected to various quality parameters such as crude protein (14.8-13.5%), ash (1.23-1.25%), colour (white), Zinc content (36-38 mg kg ⁻¹), alpha amylase activity (615-470), and gluten content (31-29%) as compared to control showing crude protein (14.8-12.9%), ash (1.20-1.22%), colour (white), Zinc content (22-25 mgkg ⁻¹), alpha amylase activity (615-512), and gluten content (31-28%). Quality evaluation of chapatti prepared using fortified flour was also carried out after 15 days interval for two months. Chapattis prepared from flour with fortification of 10 mg ZnSO ₄ scored best regarding quality parameters upto 45 days storage period followed by 5, 15, and 20 mg ZnSO ₄ whereas chapatti from control remained acceptable for 30 days.

50.TITLE	EFFECT OF VITAMIN A FORTIFICANT ON WHEAT FLOUR QUALITY DURING STORAGE
OBJECTIVES	To determine the effect of Vitamin A fortificant on storage of wheat flour
RESEARCH WORKERS	Dr. Muhammad AbrarandAnjumJaved

PROJECT	2012-14					
DURATION						
LOCATION	Wheat Research Institute, Faisalabad.					
TREATMENTS & METHODOLOGY	 Quantity of 10,20, 30, 40 and 50 percent of recommended daily allowance (RDA) of Vitamin A fortificant (retinyl acetate) will be added in flour made from Millat-11 along with control and stored at ambient temperature for 60 days. Flourquality parameters i.e. Crude protein (through kjeltech), ash (through muffle furnace), color (through colorimeter), Vitamin A content, Alpha amylase activity (through falling no. apparatus), gluten content (through glutamatic) and biscuit quality will be evaluated fortnightly. 					
PREVIOUS YEAR'S RESULTS	 10%,20%, 30%, 40% and 50% of recommended daily allowance (RDA) of Vitamin A fortificant (retinyl acetate) was added in flour made from Millat-11 along with control and stored at ambient temperature for 60 days. Fortified flour was analysedforquality parameters i.e. crude protein (14.7-12.98%), ash (0.22-0.24%),color (white), vitamin A content (215-190 ug), Alpha amylase activity (602-576), gluten content (30- 27) as compared to control with crude protein (14.7-13.0%), ash (0.22-0.24%),color (white), vitamin A content (10-07 ug), Alpha amylase activity (602-590), gluten content (30-28). Biscuits were also prepared using the flour fortified with different ratios of vitamin A fortificant (Retinylacatate) after an interval of 15 days and evaluated organoleptically. The data revealed that biscuits from flours fortified upto 40% retinyl acetate got better quality scores upto storage period of 30 days. 					

51. TITLE	EFFECT OF DIFFERENT RATIOS OF WHEAT, BARLEY, MAIZE AND SORGHUM COMPOSITE FLOURS ON QUALITY CHARACTERISTICS OF CHAPATTI
OBJECTIVES	To determine the best ratio of wheat and barley, maize and sorghum flours for value addition
RESEARCH WORKERS	AnjumJaved, Dr. Muhammad Abrar and Dr. MakhdoomHussain
PROJECT DURATION	2013-14
LOCATION	Wheat Research Institute, Faisalabad.

TREATMENTS & METHODOLOGY	Whole barley, maize and sorghum flours will be added inwhole wheat flour of Punjab-11@ 10%, 20% and 30% separately along with control for the preparation of Chapattis and stored at ambient temperature for 60 days. Composite flours will be studied for gluten content (through glutomatic apparatus), protein content (through kernelyzer/kjeltech), ash content (through muffle furnace), alpha amylase activity (through falling number apparatus), fat and fiber content. The prepared chapattis will be evaluated for various quality characteristics and the best treatment will be selected as value added product.
PREVIOUS YEAR'S RESULTS	Whole barley, maize and sorghum flours were added in whole wheat flour of Punjab-11@ 10%, 20% and 30% separately along with control for the preparation of Chapattis and stored at ambient temperature for 60 days. Composite flours was studied for gluten content (28-22%), protein content (15-12%), ash content (1.30-1.39%), alpha amylase activity (576-350), fat (3.25-2.72%) and fiber content(2.96-3.10%) as compared to control treatment showing crude protein (12.9-11.8%), ash (1.20-1.22%), alpha amylase activity (615-512), fat (2.5-2.0), fiber (1.90-1.70) and gluten content (31-28%). Chapattis were prepared and evaluated for various quality characteristics. Chapattis prepared from composite flours containing 20% barley (upto 45 days), 20% maize (upto 30 days) and 10% sorghum (upto 45 days) got better scores regarding different quality parameters.

52. TITLE	QUALITY EVALUATION OF ADVANCED BREAD WHEAT LINES/VARIETIES GROWN IN DIFFERENT AGRO- ECOLOGICAL ZONES
OBJECTIVES	To screen advanced lines for different quality traits
RESEARCH WORKERS	AnjumJaved, SadafShamim and HiraShair
PROJECT DURATION	2013-14 (Continuous nature)
LOCATION	Wheat Research Institute, Faisalabad
TREATMENTS & METHODOLOGY	All the advanced wheat lines included in National UniformWheatYield Trials and Micro Wheat Yield trials for the year 2013-14 grown in different agro-ecological zones will be tested for comprehensive quality parameters especially grain weight (seed counter & balance), test weight (through test weight/bushel weight apparatus), protein, starch and gluten content (through kernelyzer), bread making (through dough pin mixer, baking oven and fermentation cabinet) and chapatti quality (through mixer and hot plate).

PREVIOUS YEAR'S	Three hundr	ed and ninet	v six wheat s	samples from	m NUWYT	and	
RESULTS			or their phys	.			
	Trial	1000-grain. weight. (g)	Test Weight (kg hL ⁻¹)	Protein (%)	Starch (%)	Gluten (%)	
	NUWYT (N)	26.5-44.2	72.3-79.7	10.7-15.3	54.1-56.5	15.5-32.0	
	NUWYT (S)	25.3-37.5	68.4-77.8	11.6-14.8	54.0-56.8	19.0-29.3	
	MWYT (N)	32.7-42.3	71.8-77.1	11.1-15.1	54.3-56.8	20.0-29.0	
	MWYT (S)	29.1-37.6	71.2-75.7	12.6-15.3	54.2-56.6	22.0-28.7	
	Three hundred and ninety six (396) wheat samples of NUWYT and MWYT were analyzed for physico-chemical and quality traits. Above 14 percent protein and 28 percent gluten were found in wheat lines/varieties viz. V-109384, DN-84, DN-93, V-08203, WRIS-12, SD-998 and Faisalabad-08 from NUWYT (N) and WL-8169, V-076346, DN-93, NR-421, NR-408, V-7/2011, FakhreSarhad, Pirsabak-08 and local check from NUWYT(S). V-076346, V-076422(N1), NR-421, NR-409, NR-399, Nr-400, V-7/2011, NARC-2011, V-07096, Seher-06 and AAS-2011 showed above 38 g 1000-grain weight. Wheat lines NR 399, 9452, 4/43, V-11160, 09BT043, V-10217, KANZU were screened out as best varieties regarding protein and gluten content exceeding 14% and 28 %, respectively in MWYT (N) and MWYT(S). Whereas NR 399, V-11156, V-11160, 09B2003, V-10355, 09B9172, V-10193, V-10031, & V-11166 are screened out best regarding 1000-grain weight exceeding 38 g. Chapatti and bread quality scores were also within desirable range.						

53.TITLE	EFFECT OF PLANTING TIME ON GRAIN QUALITY TRAITS							
OBJECTIVES	To study the effective of the study of the s	ffect of	planting	time on	gran qua	lity trait	S	
RESEARCH	SadafShamim	and Dr.	Makhdo	omHussa	ain			
WORKERS								
PROJECT	2013-14 (Cont	inuous i	nature)					
DURATION								
LOCATION	Wheat Researc	h Instit	ute, Fais	alabad				
TREATMENTS &	All the advance	ed whea	at lines i	ncluded	in Date	of Sowii	ng Trial	s for the
METHODOLOGY	year 2013-14 will be tested for comprehensive quality parameters							
	especially grai	<u> </u>				1 A A A A A A A A A A A A A A A A A A A	<u> </u>	· ·
	test weight/bus		• •	iratus), s	tarch co	ntent, glu	uten and	l protein
	content (through kernelyzer).							
	_					1	1	
PREVIOUS YEAR'S	Parameters	D1	D2	D3	D4	D5	D6	D7
RESULTS	1000-grain	33.5-	31.9-	31.2-	31.0-	29.5-	26.8-	27.3-
	weight (g)	37.6	38.8	35.1	36.7	35.3	32.7	32.3
	Test weight	75.3-	73.0-	74.0-	71.6-	69.7-	69.4-	69.4-
	$(kghL^{-1})$	79.3	80.3	79.8	77.7	77.0	75.0	75.2
	Gluten (%)	23.7-	25.7-	25.0-	21.7-	23.3-	25.3-	24.0-
	Giuten (70)	29.3	32.3	31.7	29.3	31.3	33.0	30.3

Protein (%)	13.0-	14.0-	13.8-	12.9-	13.4-	13.8-	13.5-
FIOLEIII (70)	15.0	16.0	15.8	15.5	15.7	16.0	15.4
Starch (%)	53.4-	53.0-	52.9-	53.6-	53.5-	52.9-	52.5-
Starch (%)	55.5	54.8	55.0	55.8	55.6	55.4	55.5
Twelve advan planting time 07096 showed whereas V-11 i.e exceeding to impact on gruin increased with their best value	on grai d highe 183 and up to 80 ain qua delayeo	n quality st value Millat-).3 kghL llity sho l sowing	y. Regan in D2 11 were \sum^{1} . The growed that but yiel	ding the (10 th M the tope general t at protein d contro	ousand g Novembers regard rend for n and	grain we er) i.e. ding tes plantin gluten	eight V- 38.8 g. t weight g time's contents

54. TITLE	EFFECT OF DIFFERENT FERTILIZER TREATMENTS ON WHEAT QUALITY						
OBJECTIVES	To study the effect of fertilizer combination and time of its application on physico-chemical quality parameters in advanced wheat lines/varieties.						
RESEARCH WORKERS	HiraShair,	HiraShair, AnjumJaved and Dr. Muhammad Abrar					
PROJECT DURATION	2013-14 (0	Continuous nat	ure)				
LOCATION	Wheat Res	earch Institute	e, Faisalabad.				
TREATMENTS & METHODOLOGY	All the advanced wheat lines included in fertilizer trials for the year 2013-14 will be tested for comprehensive quality parameters especially grain weight (seed counter & balance), test weight (through test weight/bushel weight apparatus), starch, gluten protein, content (through kernelyzer) and Chapatti quality.						
PREVIOUS YEAR'S RESULTS	Trials1000-grainTest wt.ProteinStarchGluten						
		weight(g)	(kghL ⁻¹)	(%)	(%)	(%)	
	Normal	35.3-40.9	72.2-79.2	8.8-14.1	54.6- 57.2	10.0-26.7	
	Late	31.7-39.9	72.4-77.6	10.0- 15.3	53.4- 57.0	11.3-28.0	
	and late) treatments results reg maximum Highest 10	red and ninety I were ana and the resu arding test we values at the F 000 grain weig ation of F ₂	lyzed for g lts revealed eight, protein F_4 treatment (ght was reco	rain qualit that, Milla 1, gluten au 160-120-60 rded for V-	y with fo at-11 show nd starch NPKkg ha 11183 i.e.	but fertilizer wed the best content with a^{-1}). 40.9 g with	

	planting. Similarly, in the late planting, FSD-08 made the highest score in 1000 grain weight at the F_1 treatment(0-0-0 NPK kg ha ⁻¹) i.e. 39.9 g. Among the fertilizer treatments, F_4 (160-120-60NPKkg ha ⁻¹) and F_2 (80-60-60NPKkg ha ⁻¹) revealed, promising results, regarding protein
	and gluten and 1000 grain weight, respectively.

55. TITLE	EFFECT OF SPLIT APPLICATION OF NITROGEN ON GRAIN YIELD OF WHEAT					
OBJECTIVES	To study the effect of split nitrogen application on various growth stages of wheat crop by analyzing the impact of the treatments on different physico-chemical quality parameters.					
RESEARCH WORKERS	HiraShair and SadafShamim					
PROJECT DURATION	2013-14 (Continuous nature)					
LOCATION	Wheat Research Institute, Faisalabad.					
TREATMENTS & METHODOLOGY	Wheat variety Punjab-11 will be tested for comprehensive quality parameters especially, 1000 grain weight (using seed counter), test weight (using bushel weight apparatus), protein, gluten, and starch.					
PREVIOUS YEAR'S RESULTS	F ₁ (0-90-60 NPK kgha ⁻¹ all applied at sowing) scored the highest in grain wt. with 39.30 g and starch with 56.5%, followed by F ₆ (120-90-60 NPK kg ha ⁻¹ when applied 1/3 N at sowing+ 1/3 N at tillering+ 1/3 N at booting) with acceptable grain weight and test wt. F ₉ (150-90-60 NPK kg ha ⁻¹ when applied ½ N at sowing+ ½ N at booting) scored maximum with 12.6 % protein and 21 % gluten content. But F ₈ (150-90-60 NPK kg ha ⁻¹ when applied ½ N at sowing+ ½ N at tillering) excelled not only in test wt. and grain wt. but also in protein and gluten content with minor differences from the highest stood treatments, followed by F ₉ treatment to be on good grounds on the same quality parameters.					

56. TITLE	SUITABILITY OF NEW SPRING WHEAT VARIETIES FOR THE PREPARATION OF VALUE ADDED PRODUCTS
OBJECTIVES	To determine the suitability of new varieties for making different value added products
RESEARCH WORKERS	SadafShamim, HiraShair and Dr. Muhammad Abrar
PROJECT DURATION	2012-14 (Continuous nature)
LOCATION	Wheat Research Institute, Faisalabad.

TREATMENTS & METHODOLOGY	The new spring wheat varieties AARI-11, Punjab-11, Millat-11, Lasani-08 will be tested protein contents, starch content, gluten, water absorption, dough development time, dough stability, gluten quality / elasticity and dough softening. Value added products i.e. Chapatti, bread, biscuit, cake, nan and pizza will be prepared and evaluated to assess varietal difference.
PREVIOUS YEAR'S RESULTS	Three latest spring wheat varieties, AARI-11, Punjab-11 and Millat-11 along with Lasani-08 were tested for their value addition and products were analyzed through sensory evaluation, rheological testing and texture analyzing. All of four varieties were good for chapatti whereas Punjab-11 was best suited for cake, pizza & Lasani-08, Millat-11 for biscuit preparation.

57. TITLE	QUALITY D BARLEY	DETERMINATI	ION OF ADVANC	ED LINES OF
OBJECTIVES	To screen high	yielding barley	lines for different qual	ity traits
RESEARCH WORKERS	HiraShairand Dr. MakhdoomHussain			
PROJECT DURATION	2013-14 (Cont	inuous nature)		
LOCATION	Wheat Researc	h Institute, Faisa	labad.	
TREATMENTS & METHODOLOGY	High yielding lines of barley will be evaluated for 1000 kernel weight (seed counter & balance), test weight (through test weight/bushel weight apparatus) and protein content (through kernelyzer)			
PREVIOUS YEAR'S				
RESULTS	Trial	1000-grain	Test Wt. (kghL ⁻¹)	Protein (%)
		weight (g)		
	D1	35.2-41.8	50.1-67.6	10.3-12.7
	D2	37.5-46.3	51.2-67.7	10.3-13.2
				13.0-14.6
	Barani	36.0-44.0	50.7-72.0	12.3-14.8
	MICRO	31.7-41.5	54.4-62.7	11.0-12.8
	and the result parameters an yielded excell showed good scoring variet maximum valu gave the higher On the other h B-09008 i.e. 4	s revealed that d protein show ing results in g protein results. I ies regarding 10 ues of 46.2 g and st percentage of p and, Micro trial	samples were analyzed in the date of sowing ed contrasting results grain wt. and test we 3-10007 and B-11002 000 grain wt. and t 72.0 kghL ⁻¹ , respective protein i.e 14.8 percent presented maximum 1 test wt. for B-09028 i e of protein.	g trials, the yield s. D_2 and Barani eight whereas D_3 were the highest test wt. revealing vely, and B-11002 t. 1000 grain wt. for

58. TITLE	EFFECT OF DIFFERENT TEMPERING CONDITIONS ON THE MILLING YIELD OF CURRENT WHEAT VARIETIES
OBJECTIVES	To determine the suitable amount of moisture and time required for proper tempering of commercial wheat varieties.
RESEARCH WORKERS	SadafShamim, HiraShair and Dr. Muhammad Abrar
PROJECT DURATION	2013-14 (Continuous nature)
LOCATION	Wheat Research Institute, Faisalabad.
TREATMENTS & METHODOLOGY	Three varieties viz. AARI-11, Punjab-11 and Millat-11will bestudied for determination of suitable tempering conditions. Each wheat variety will be tempered at moisture contents of 14.5. 15.0, 15.5 and 16% for time intervals of 16, 24, 32 and 48 hours. Milling will be carried out through Buhler mill and data for flour yield will be recorded to appraise the suitable tempering moisture content and time for maximum flour recovery
PREVIOUS YEAR'RESULTS	Three wheat varieties i.e. AARI-11, Punjab-11 and Millat-11 were selected for tempering study. Maximum flour recovery was shown by Punjab-11 i.e. 70% at 15% moisture level when it was tempered for 24 hours

SHUTTLE BREEDING PROGRAMME

59.TITLE	RACE ANALYSIS OF YELLOW, LEAF AND STEM RUST				
OBJECTIVES	To ide	To identify rust races prevailing in the fields during 2014-15			
RESEARCH WORKER (S)	Humas	HumaSaffdar and Rabia Sultan			
PROJECT DURATION	2014-1	5			
LOCATION	Wheat	Wheat Research Sub Station, Murree			
TREATMENTS & METHODOLOGY	increas individ rust. T	Rust samples from different field locations will be obtained and increased on morocco. After increase these samples will be inoculated individually on differential sets for each of the stem, leaf and yellow rust. The data obtained from these differential sets will reveal the information about the races prevailing in the fields during the season.			
PREVIOUS YEAR'S					
RESULT	Sr. #	Number of Samples processed	Rust Type	Race Identified	
	1	05	Stem Rust	RRTTF	
	2	15	Stripe Rust	574232	
	3	15	Leaf Rust	Differential set not available	

60.TITLE	SEED INCREASE OF RUST DIFFERENTIAL SETS (NEAR ISOGENIC LINES)
OBJECTIVES	To produce sufficient quantity of differentials seed for their use in rust race analysis
RESEARCH WORKER (S)	HumaSaffdar and Rabia Sultan
PROJECT DURATION	2014-15
LOCATION	Wheat Research Sub Station, Sunny Bank, Murree
TREATMENTS & METHODOLOGY	Near isogenic lines representing the differential sets for each type of rust disease will be sown in field plots during March-April 2014. Spikes will be harvested at maturity and seed will be saved for use in next analysis.

PREVIOUS YEAR'S			
RESULT	Sr #	Seed Type	Produce
	1	Lr Differential	Crop still in field
	2	SR Differential	Crop still in field
	3	Yr differential	Crop still in field

61.TITLE	SCREENING RUSTS	OF WI	HEAT GE	ERMPLA	ASM AGA	INST STRIPE
OBJECTIVES		To find out rust resistant varieties from the available germplasm for their use in resistant breeding				
RESEARCH WORKER (S)	HumaSaffdar an	HumaSaffdar and Rabia Sultan				
PROJECT DURATION	2013-14					
LOCATION	Wheat Research	Sub Sta	ation, Sunn	y Bank, I	Murree	
TREATMENTS & METHODOLOGY	A set of 20 wheat advance lines were sown in trays of peat moss as a medium. At 2 leaf stages the germplasm was inoculated with Stripe rust culture. The isolate number 13yppk42 which is race 574232. Out of 20 lines 5 were resistant, 8 were moderately resistant and 5 were susceptible.					
PREVIOUS YEAR'S RESULT		Sra #	E 4 #	Coore	Domoniya	
NESULI		Sr #	Entry # V7096	Score 5	Remarks MR	
		2	V08082	8	S	
		3	V08032 V08171	78	S	
		4	V08171 V08173	5	MR	
		5	V08203	7	MSS	
		6	V08314	5	MR	
		7	V10031	2	R	
		8	V10110	3	R	
		9	V10217	8	S	
		10	V10202	2	R	
		11	V10287	8	S	
		12	V11168	1	R	
		13	V11172	4	R	
		14	V11183	5	MR	
		15	V10306	45	MR	
		16	V09136	6	MR-MS	
		17	V09082	5	MR	
		18	V09087	7	MSS	
		19	V04179	6	MR-MS	
		20	V03079	8	S	

62.TITLE	STUDY OF L CULTIVARS	ATENCY I	PERIOD IN	SELECTED) WHEAT
OBJECTIVES	To identify partially resistant wheat cultivars				
RESEARCH WORKER (S)	HumaSaffdar and	HumaSaffdar and Rabia Sultan			
PROJECT DURATION	2013-14	2013-14			
LOCATION	Wheat Research S	Sub Station, N	Iurree		
TREATMENTS & METHODOLOGY	The latency period start to appear a germplasm again inoculum was of partial resistant a infection frequen susceptible respo- were observed moderately resista a little bit longer day	after inoculat ast stripe rus btained from re associated cy. It was ob- nse had laten on day 15 th ance response	ion. In this ex t isolate 13yp CDRI Murrer with longer lat oserved that lin cy period of 15 after inocula to moderately	xperiment we pk42 race 57 e. The geness tency period a se showing R 5 days i.e firs tion. The lin susceptible re ptoms were o	e tested the 74232. This is conferring and reduced esistant and st symptoms ne showing esponse had
PREVIOUS YEAR'S RESULT	Sr #	Entry #	Latency	Remarks	
	1	V7096	period 18 days	MR	
	2	V08082	15 day	S	
	3	V08171	15days		
	4	V08173	18 days	MR	
	5	V08203	18 days	MSS	
	6	V08314	18 days	MR	
	7	V10031	15 days	R	
	8	V10110	15 days	R	
	9	V10217	15 days	S	
	10	V10202	15 days	R	
	11	V10287	15 days	S	
	12	V11168	15 days	R	
	13	V11172	15 days	R	
	14	V11183	18 days	MR	
	15	V10306	18 days	MR	
	16	V09136	18 days	MR-MS	
	17	V09082	18 days	MR	
	18	V09087	18 days	MSS	
	19	V04179	18 days	MR-MS	
	20	V03079	15 days	S	

63.TITLE	SCREENING OF WHEAT ADVANCED LINES AGAINST POWEDRY MILDEW (<i>Blumeriagraminis</i> f.sp. tritici)				
OBJECTIVES	To find out powdery mildew resistant lines				
RESEARCH WORKER (S)		Dr. ArshadMehmood, Faqir Muhammad, Muhammad MakkyJavaid HumaSaffdar and Rabia Sultan			
PROJECT DURATION	2014-15 (con	tinuous nature).			
LOCATION	Wheat Resear	rch Sub-Station, M	lurree		
METHOD OLOGY PREVIOUS YEAR'S RESULTS	 planted under field condition at Summer Agricultural Research Sta Kaghan. Each entry will be sown in single row of one meter and meter apart. Data will be recorded during 2nd week of Au according to the scale (0-9) as given by Mayee and Dathar 1986. Following powdery mildew infestation reactions were noted at Kaghan during 2013-14. 			of one meter and (2 nd week of Au d Dathar 1986.	
	Scale	Field response	Severity (%)	No. of lines	
	0	HR	0	115	
	1	R	0.1 -1.0	192	
	3	MR	11.1 - 10	189	
	5	MS	10.1 - 30	112	
	5				
	7	S	30.1-50	47	

64.TITLE	SUMMER WHEAT SCREENING NURSERY KAGHAN
OBJECTIVES	 i. To screen the wheat germplasm against rusts and powdery mildew. ii. To incorporate effective rust resistant genes in local germplasm. iii. To select the resistant material for further studies. iv. To advance the generations for speedy variety development.
RESEARCH	Dr. GhulamMahboobSubhani, Dr. MakhdoomHussainand Dr.
WORKER (S)	Muhammad Arshad
PROJECT DURATION	2014-15

LOCATION	Summer Agricultural Research Station, Kaghan
TREATMENTS & METHODOLOGY	About 1200 entries will be planted during last week of May, 2015 in paired rows of 2 meter length. Around the planted material susceptible wheat variety (Morocco) will also be planted. Rusts and powdery mildew data will be recorded in August. Hybridization work will be carried out. Harvesting of fresh crosses and selected material will be done during the month of September, 2014 for evaluation at WRI, Faisalabad.
PREVIOUS YEAR'S RESULT	Thirty six entries showed susceptible reaction to Lr while all other entries showed tolerance from Yr and Sr.

65.TITLE	STEM RUST SCREENING NURSERY KENYA
OBJECTIVES	To screen the promising wheat genotypes against stem rust especially Ug-99 race
RESEARCH WORKER (S)	Dr. MakhdoomHussainand Dr. Muhammad Arshad
PROJECT DURATION	2014-15
LOCATION	KARI., Kenya
TREATMENTS & METHODOLOGY	Sixty promising genotypes will be send to KARI., Kenya with the coordination of National Wheat Coordinator, NARC., Islamabad and CIMMYT Pakistan for screening against stem rust especially Ug-99 race during 1 st . week of May, 2015. Stem rust data will be recorded in collaboration with the international breeders and pathologist. Recorded data will be provided by the organizers to collaborators.
PREVIOUS YEAR'S RESULT	Among tested entries, two entries(////)showed resistant to moderately resistant response

66.TITLE	DEVELOPMENT OF HIGH YIELDING AND DISEASE RESISTANT WHEAT VARIETY FOR RICE ZONE					
OBJECTIVES	 i. To screen wheat germplasm for specific micro climatic conditions under present changing climatic scenario. ii. To screen wheat germplasm against rusts. iii. To develop high yielding, disease resistant and well adapted wheat varieties for rice zone. 					
RESEARCH	Dr. Makhdoor	nHussain,	Dr. Ghu	ulamMahboob	Subhani, N	Auhammad
WORKER (S)	Saleem, Dr. M	uhammad	Arshad an	d Muhammad	MuzaffarIc	ıbal
PROJECT	2014-15 (Conti	nuous nat	ure)			
DURATION						
LOCATION	Rice Research	Institute, 1	Kala Shah	Kaku		
TREATMENTS &	Following mate	erial will b	be planted:			
METHODOLOGY	i. Trac	ck record	of wheat v	arieties		
	ii. Seg	regating g	enerations			
	iii. Commercial varieties and advanced wheat lines (M					
	III. Con	nmercial	varieties a	nd advanced	wheat lines	s (MICRO,
	NU	WYT, B-7	Frials).			S (MICRO,
	NU	WYT, B-7	Frials).	nd advanced		S (MICRO,
PREVIOUS YEAR'S	NU	WYT, B-T al Disease	Frials). screening	nursery (LDS	N)	S (MICKO,
PREVIOUS YEAR'S RESULT	NU iv. Loc Selected variet	WYT, B-7 al Disease ies/lines in	Frials). screening track reco	nursery (LDS) ord of wheat v	N) arieties	
	NU ^v iv. Loc	WYT, B-7 al Disease ies/lines in Disease	Frials). screening track reco reaction	nursery (LDS	N) arieties Disease r	reaction
	NU ¹ iv. Loc Selected variet	WYT, B-7 al Disease ies/lines in Disease Lr	Frials). screening track reco reaction Yr	nursery (LDS) ord of wheat v	N) arieties Disease r Lr	reaction Yr
	NUT iv. Loc Selected variet Varieties Fsd.85	WYT, B-7 al Disease ies/lines in Disease Lr 0	Frials). screening track reco reaction Yr TMS	; nursery (LDS ord of wheat v Varieties Lasani.08	N) arieties Disease r Lr 0	reaction Yr TMS
	NU ¹ iv. Loc Selected variet	WYT, B-7 al Disease ies/lines in Disease Lr	Frials). screening track reco reaction Yr	nursery (LDS) ord of wheat v	N) arieties Disease r Lr	reaction Yr
	iv. Loc Selected variet Varieties Fsd.85 Pasban.90	WYT, B-7 al Disease ies/lines in Disease Lr 0 5MS	Frials). screening track reco reaction Yr TMS 0	nursery (LDS ord of wheat v Varieties Lasani.08 Millat.11	N) arieties Disease r Lr 0 TMS	reaction Yr TMS 0
	NUT iv. Loc Selected variet Varieties Fsd.85 Pasban.90 Chenab.2000	WYT, B-7 al Disease ies/lines in Disease Lr 0 5MS 0	Frials). screening track reco reaction Yr TMS 0 0 0	ord of wheat versery (LDS) Varieties Lasani.08 Millat.11 Pb.11	N) arieties Disease r Lr 0 TMS TMS	reaction Yr TMS 0 TMS
	NUiv.LocSelected varietiVarietiesFsd.85Pasban.90Chenab.2000Iqbal.2000	WYT, B-7 al Disease ies/lines in Disease Lr 0 5MS 0 TMS	Frials). screening track reco reaction Yr TMS 0 0 0 0	y nursery (LDS ord of wheat v Varieties Lasani.08 Millat.11 Pb.11 Aas.11	N) arieties Disease r Lr 0 TMS TMS 0	reaction Yr TMS 0 TMS TMS
	NUiv.LocSelected varietiesVarietiesFsd.85Pasban.90Chenab.2000Iqbal.2000SH.2002AS.2002Fareed.06	WYT, B-7 al Disease ies/lines in Disease Lr 0 5MS 0 5MS 0 TMS 0 0 0 0 0	Frials). screening track reco reaction Yr TMS 0 0 0 5MS	y nursery (LDS ord of wheat v Varieties Lasani.08 Millat.11 Pb.11 Aas.11 AARI.11 Galaxy.13 V.11183	N) arieties Disease r Lr 0 TMS TMS 0 0 0	reaction Yr TMS 0 TMS TMS 5MS
	NUiv.LocSelected varietiVarietiesFsd.85Pasban.90Chenab.2000Iqbal.2000SH.2002AS.2002	WYT, B-7 al Disease ies/lines in Disease Lr 0 5MS 0 TMS 0 0 0	Frials). e screening n track reco reaction Yr TMS 0 0 0 0 5MS 5MS	varieties Varieties Lasani.08 Millat.11 Pb.11 Aas.11 AARI.11 Galaxy.13	N) arieties Disease r Lr 0 TMS TMS 0 0 0 0	reaction Yr TMS 0 TMS TMS 5MS 5MS

ii.	ii. Commercial varieties and advanced lines						
	Varieties/	Disease	Yield				
	Lines	Lr	Yr	kg ha ⁻¹			
	V.11183	10MS	TMS	60			
	Fsd.08	5MS	0	59			
	V.08203	0	TMR	53			
	Galaxy.13	0	10MS	49			
	Punjab.11	0	5MS	49			
	Pasban.90	0	5MS	48			
	Millat.11	0	5MS	44			
	AARI.11	0	20MSS	38			
	Lasani.08	0	5MS	34			

PROJECTS

67.TITLE	SAFEGUARDING PAKISTANI WHEAT FROM POTENTIAL DISEASE THREATS (PARB FUNDED PROJECT # 161).					
OBJECTIVES	Development of wheat varieties resistant to rusts, karnal bunt, <i>Helminthosporium</i> , blight and powdery mildew					
RESEARCH	Dr. MakhdoomHussain, Dr. GhulamMahboobSubhani, Javed Anwar,					
WORKER (S)	Faqir Muhammad and MujahidHussain					
PROJECT	2010-15					
DURATION						
LOCATION	Wheat Research Institute, Faisalabad.					
TREATMENTS &	i. 300 lines will be screened during the current year.					
METHODOLOGY	ii. 30 lines will be tested for yield in preliminary yield trials					
	iii. 15 lines will be tested for regular yield trials					
PREVIOUS YEAR'S RESULT	i. Fifty three lines were found resistant for leaf, yellow rust and powdery mildew.					
	ii. Ten lines produced higher grain yield than checks varieties in preliminary yield trials.					
	iii. Five lines viz; V-1305, V-13007, V-1310, V-13012 and V- 13016 produced higher grain yield than checks.					
	iv. V-12304 and V-11338 tested in MTWV					
	v. V-09082 and V-09007showed good results in NUWYT					
	vi. Five demonstration plots were planted on farmers field					

68. TITLE	WHEAT CROP IMPROVEMENT FOR DROUGHT TOLERANCE THROUGH BIOTECHNOLOGY (PARB FUNDED PROJECT # 103)
OBJECTIVES	Wheat crop improvement for drought tolerance by introducing drought tolerance enhancing genes from other species through biotechnology.
RESEARCH	Dr. MakhdoomHussain, Dr. Muhammad Munir, Muhammad
WORKER (S)	MuzafarIqbal, Ch. ZahidMukhtar and Dr. Nasir Ahmad Saeed
PROJECT	2014-15
DURATION	
LOCATION	Wheat Research Institute, Faisalabad and National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad
TREATMENTS & METHODOLOGY	Field trials of transgenic material, micro field trials will be conducted for yield potential and other desirable morphological traits according to the NIBGE instructions

PREVIOUS YEAR'S	Set I (No irr	igation and	l no rainfall, Tu	nnel)
RESULTS	× ×	0	,	,
		Entry	Yield	% increase over
		No.	(Kg ha ⁻¹)	Punjab-11
		7	2507	26.68
		11	2480	25.31
		8	2243	13.34
	Set II (Only	rainfall)		
		Entry	Yield	% increase over
		No.	(Kg ha ⁻¹)	Punjab-11
		4	4222	27.97
		5	3958	19.75
		8	3826	15.97
	Set III (One	irrigation	+ rainfall)	
		Entry	Yield	% increase over
		Entry No.	Yield (Kg ha ⁻¹)	% increase over Seher-06
		v		
		No.	(Kg ha ⁻¹)	Seher-06
		No. 10	(Kg ha⁻¹) 5542	Seher-06 42.87
	Set IV (Nor	No. 10 11 9	(Kg ha ⁻¹) 5542 5225	Seher-06 42.87 34.69
	Set IV (Nor	No. 10 11 9	(Kg ha ⁻¹) 5542 5225 4829 on +rainfall) Yield	Seher-06 42.87 34.69
	Set IV (Nor	No. 10 11 9 mal irrigati	(Kg ha ⁻¹) 5542 5225 4829 on +rainfall)	Seher-06 42.87 34.69 24.50
	Set IV (Nor	No. 10 11 9 mal irrigati Entry No. 7	(Kg ha ⁻¹) 5542 5225 4829 on +rainfall) Yield	Seher-06 42.87 34.69 24.50
	Set IV (Nor	No. 10 11 9 mal irrigati Entry No.	(Kg ha ⁻¹) 5542 5225 4829 on +rainfall) Yield (Kg ha ⁻¹)	Seher-06 42.87 34.69 24.50 % increase over Seher-06

69.TITLE	WHEAT PRODUCTIVITY ENHANCEMENT PROGRAMME (W-PEP)
OBJECTIVES	To enhance wheat productivity by provision of high yielding varieties with rust resistance especially Ug99.
RESEARCH WORKER (S)	Dr. Makhdoom Hussain and Dr. Javed Ahmad
PROJECT DURATION	2010-15 (Five years)
LOCATION	Wheat Research Institute, Faisalabad
TREATMENTS & METHODOLOGY	This project has four objectives i.e. i) Objective-1 (Surveillance), ii) Objective-2 (Host resistance), iii) Objective-3 (Breeding) and iv) Objective-4 (Seed). Work will be carried out according to specified plan of the project.

PREVIOUS YEAR'S		
RESULT	Objective-1	180 locations in 35 districts surveyed
	(Surveillance)	
	Objective-2	The isogenic lines of Leaf Rust including Lr 18, Lr 19,
	(Host	Lr 25, Lr 27 +31, Lr 28, Lr 32, Lr 36, Lr 37 and Lr
	resistance)	23+Gaza as well as the isogenic lines of Yellow Rust
		including Yr 1, Yr 3, Yr5, Yr 10, Yr 15, Yr 17, Yr 18,
		Yr 24, Yr 26, Yr 28, YrCv, Yr3, SERI, Super Kauz
		and Yrsp were found resistant.
	Objective-3	Overall breeding program strengthened & capacity
	(Breeding)	building
	Objective-4	Pre basic seed=4.56 tons
	(Seed)	Basic seed=33.70 tons

70. TITLE	DEVELOPMENT OF HALOPHYTIC WHEAT FOR AGRICULTURE ON SALT AFFECTED LANDS							
OBJECTIVES	To change the physiology of the wheat plant making it halophytic.							
RESEARCH WORKER (S)	Dr. Makhdoom Hussain, Dr. Javed Ahmad and Muhammad Waqa Jamil, Muhammad Yousaf, Director, SSRI, Pindi Bhattian. Jan Dvorak, Dept. of Plant Sciences, University of California, Davi USA), M. Javed. Iqbal,Dept. of Plant Sciences,University of California, Davis, USA.							
PROJECT DURATION	2012-15 (Three years)							
LOCATION	Wheat Research Institute, Faisalabad and University of California, Davis, USA.							
TREATMENTS & METHODOLOGY	The homozygosity for the <i>ph1</i> state will allow homoeologous recombination between the E and D chromosomes. Recombinant inbreds and backcross recombinant inbred lines will be tested both for agronomic evaluation in field trials in Pakistan, and by simultaneous genotyping at North Dakota State University, USA. Current year work plani.Salinity trials under Wheat Research Institute, Faisalabad. a. Wheat Research Institute, Faisalabad. b. Pacca Anna, Faisalabad. c. Tandojam, Sindh.ii.Salinity trials under Soil salinity Research Institute, PindiBhattian. a. SSRI, PindiBhattian b. Bahawalnagar c. Rahim Yar Khan							

	a. AgCS 2000, b. Salin i. iv. Soil analysis wheatgrass w	S, BeCS, Yee Pasban-90 ity levels (The Low, Med s of amphipy will be condu- uss and grain analyzed.	and Haider-9 hree) lium and Hig ploid trials acted. in yield of	ninese spring 3 h salinity and minera amphiploid	ies/varieties g, Ishi, Auqab ls analysis o trials will b
PREVIOUS YEAR'S RESULT	<u>Pakka Anna</u> Biomass Table 1: Comparis varie		ass (kgha ⁻¹) d different sal		wheat/barley
	Varieties	Low Salinity Level	Medium Salinity Level	High Salinity Level	Mean
	AgCS	7087	5326	4354	5589 A
	Yecora	5625	2826	2333	3595 F
	BeCS	5861	4653	3938	4817 CD
	Chinese spring	7118	4896	4069	5361 AB
			40.47	2525	470C CD
	Ishi (Barley)	6007	4847	3535	4796 CD
	Uqab-2000	7083	3938	3118	4713 D
	Uqab-2000 Pasban-90	7083 5729	3938 4215	3118 2618	4713 D 4188 E
	Uqab-2000 Pasban-90 Haider-93 (Barley)	7083 5729 6528	3938 4215 5104	3118 2618 3535	4713 D
	Uqab-2000 Pasban-90 Haider-93 (Barley) Mean	7083 5729	3938 4215	3118 2618	4713 D 4188 E
	Uqab-2000 Pasban-90 Haider-93 (Barley) Mean Grain Yield Table-2: Con	7083 5729 6528 6380 A parison of ey varieties Low Salinity	3938 4215 5104 4476 B grain yield (under differ Medium Salinity	3118 2618 3535 3438 B kgha ⁻¹) of d ent salinity High Salinity	4713 D 4188 E 5056 BC
	Uqab-2000 Pasban-90 Haider-93 (Barley) Mean Grain Yield Table-2: Con wheat/barle	7083 5729 6528 6380 A parison of ey varieties	3938 4215 5104 4476 B grain yield (under differ Medium	3118 2618 3535 3438 B kgha ⁻¹) of d ent salinity High	4713 D 4188 E 5056 BC
	Uqab-2000 Pasban-90 Haider-93 (Barley) Mean Grain Yield Table-2: Con wheat/barle	7083 5729 6528 6380 A parison of ey varieties Low Salinity Level	3938 4215 5104 4476 B grain yield (under differ Medium Salinity Level	3118 2618 3535 3438 B kgha ⁻¹) of d ent salinity High Salinity Level	4713 D 4188 E 5056 BC
	Uqab-2000 Pasban-90 Haider-93 (Barley) Mean Grain Yield Table-2: Con wheat/barle Varieties AgCS	7083 5729 6528 6380 A parison of ey varieties Low Salinity Level 1519	3938 4215 5104 4476 B grain yield (under differ Medium Salinity Level 1197	3118 2618 3535 3438 B kgha ⁻¹) of d ent salinity High Salinity Level 969	4713 D 4188 E 5056 BC
	Uqab-2000 Pasban-90 Haider-93 (Barley) Mean Grain Yield Table-2: Con wheat/barle Varieties AgCS Yecora	7083 5729 6528 6380 A parison of ey varieties Low Salinity Level 1519 2486	3938 4215 5104 4476 B grain yield (under differ Medium Salinity Level 1197 1089	3118 2618 3535 3438 B kgha ⁻¹) of d ent salinity High Salinity Level 969 1027	4713 D 4188 E 5056 BC
	Uqab-2000Pasban-90Haider-93 (Barley)MeanGrain YieldTable-2: Con wheat/barleVarietiesAgCSYecora BeCS	7083 5729 6528 6380 A parison of ey varieties Low Salinity Level 1519 2486 1044	3938 4215 5104 4476 B grain yield (under differ Medium Salinity Level 1197 1089 944	3118 2618 3535 3438 B kgha ⁻¹) of d ent salinity High Salinity Level 969 1027 865	4713 D 4188 E 5056 BC lifferent levels Mean 1228 D 1534 C 951 F 1090 E 1498 C
	Uqab-2000Pasban-90Haider-93 (Barley)MeanGrain YieldTable-2: Con wheat/barleVarietiesAgCSYecora BeCSChinese spring	7083 5729 6528 6380 A nparison of ey varieties Low Salinity Level 1519 2486 1044 1333	3938 4215 5104 4476 B grain yield (under differ Medium Salinity Level 1197 1089 944 1026	3118 2618 3535 3438 B kgha ⁻¹) of d ent salinity High Salinity Level 969 1027 865 910	4713 D 4188 E 5056 BC lifferent levels Mean 1228 D 1534 C 951 F 1090 E
	Uqab-2000Pasban-90Haider-93 (Barley)MeanGrain Yield Table-2: Con wheat/barleVarietiesVarietiesAgCS Yecora BeCS Chinese spring Ishi (Barley)	7083 5729 6528 6380 A parison of ey varieties Low Salinity Level 1519 2486 1044 1333 1962	3938 4215 5104 4476 B grain yield (under differ Medium Salinity Level 1197 1089 944 1026 1407	3118 2618 3535 3438 B kgha ⁻¹) of d ent salinity High Salinity Level 969 1027 865 910 1125	4713 D 4188 E 5056 BC iifferent levels Mean 1228 D 1534 C 951 F 1090 E 1498 C
	Uqab-2000Pasban-90Haider-93 (Barley)MeanGrain YieldTable-2: Con wheat/barleVarietiesAgCSYecoraBeCSChinese springIshi (Barley)Uqab-2000	7083 5729 6528 6380 A parison of ey varieties Low Salinity Level 1519 2486 1044 1333 1962 2918	3938 4215 5104 4476 B grain yield (under differ Medium Salinity Level 1197 1089 944 1026 1407 1528	3118 2618 3535 3438 B kgha ⁻¹) of d ent salinity High Salinity Level 969 1027 865 910 1125 1318	4713 D 4188 E 5056 BC b lifferent levels Mean 1228 D 1534 C 951 F 1090 E 1498 C 1921 A

Tandojam

Biomass

Table-3: Comparison of biomass (kg ha⁻¹) of different wheat/barley varieties under different salinity levels

Varieties	Low Salinity Level	Medium Salinity Level	High Salinity Level	Mean
AgCS	15764	10694	8150	11536BC
Yecora	13360	8847	6575	9594E
BeCS	13889	8660	7228	9925DE
Chinese spring	14444	11910	10651	12335B
Ishi (Barley)	10910	11197	10867	11021 CD
Uqab-2000	15694	14469	13958	14707 A
Pasban-90	12153	11681	10525	11457 BC
Haider-93 (Barley)	15764	14444	13617	14608 A
Mean	14008 A	11488 B	10196C	

Grain Yield

Table-4:Comparison of grain yield (kg ha⁻¹) of different wheat/barley varieties under different salinity levels

Varieties	Low Salinity	Medium Salinity	High Salinity	Mean
	Level	Level	Level	
AgCS	2684	2319	2138	2380 D
Yecora	5655	3620	2603	3959 C
BeCS	2239	1472	1394	1702 F
Chinese spring	3121	2583	2186	2630 D
Ishi (Barley)	2386	1965	1763	2038 E
Uqab-2000	5822	4875	4553	5084 A
Pasban-90	5153	5146	3099	4466 B
Haider-93 (Barley)	1800	1681	1629	1703 F
Mean	3607 A	2958 B	2421 C	

<u>Rahim Yar Khan</u> Biomass

Table-5: Comparison of biomass (kg ha⁻¹) of different wheat /barley varieties under different salinity levels

Varieties	Low Salinity	Medium Salinity	High Salinity	Mean
	Level	Level	Level	
AgCS	6621	5172	4291	5361 A
Yecora	5561	2859	2228	3549 E
BeCS	5523	4739	3877	4713 BC
Chinese spring	6300	4949	3908	5052 AB
Ishi (Barley)	5963	4728	3256	4647 C
Uqab-2000	6533	3734	3066	4444 C
Pasban-90	5524	4001	2586	4037 D
Haider-93 (Barley)	6197	4893	3359	4816 BC
Mean	6028 A	4384 B	3321 C	

Grain Yield

Table-6:Comparison of grain yield (kg ha⁻¹) of different wheat/barley varieties under different salinity levels

Varieties	Low Salinity Level	Medium Salinity Level	High Salinity Level	Mean
AgCS	1455	1141	973	1189 DE
Yecora	2387	1006	999	1464 BC
BeCS	990	893	800	894 F
Chinese spring	1209	1019	949	1059 EF
Ishi (Barley)	1768	1223	1067	1352 CD
Uqab-2000	2600	1304	1237	1714 D
Pasban-90	2380	1625	1114	1706 A
Haider-93 (Barley)	2253	1302	1065	1540 AB
Mean	1880 A	1189 B	1025 C	

<u>Bhawalnagar</u>

Biomass

Table-7: Comparison of biomass (kg ha⁻¹) of different wheat /barley varieties under different salinity levels

Varieties	Low Salinity Level	Medium Salinity Level	Mean
AgCS	6181	5985	6083 A
Yecora	4779	4392	4585 E
BeCS	5079	4780	4929 D
Chinese spring	5665	5596	5630 B
Ishi (Barley)	5124	5067	5096 C
Uqab-2000	5800	5605	5702 B
Pasban-90	4775	4578	4677 E
Haider-93 (Barley)	5806	5509	5657 B
Mean	5401 A	5189 B	

Grain Yield

Table-8: Comparison of grain yield (kg ha⁻¹) of different wheat /barley varieties under different salinity levels

Varieties	Low Salinity Level	Medium Salinity Level	Mean
AgCS	1484	1413	1449 E
Yecora	2057	1733	1895 C
BeCS	1365	1215	1290 F
Chinese spring	1332	1297	1314 F
Ishi (Barley)	1576	1315	1445 E
Uqab-2000	3164	3076	3120 A
Pasban-90	2115	2052	2083 B
Haider-93 (Barley)	2178	1888	2033 B
Mean	1909 A	1749 B	