

ANNUAL WHEAT PLANNING MEETING 2017-18

WHEAT RESEARCH INSTITUTE, FAISALABAD

1. TITLE MAINTENANCE AND IMPROVEMENT OF WHEAT GERMPLASM

OBJECTIVES:

- •To conserve existing genetic variability and enhancing the diversity of wheat germplasm.
- Addition of new entries to enhance genetic stock

TREATMENTS & METHODOLOGY:

Total entries: 663

Sowings: 1st week of November

Plot size: 1 rows of 2.5 meter

Six hundred & twenty (620) entries were tested. One hundred & twenty five (125) entries were discarded due to poor look and duplication. One hundred and sixty eight (168) new entries having desirable and diverse genetic background were added. True to type heads from remaining entries were selected and threshed to maintain the genetic stock.

2. TITLE CROSSING BLOCK AND HYBRIDIZATION

OBJECTIVES

- To maintain genotypes/lines with their typical characteristics.
- To combine high yield, adaptability and tolerance to biotic & abiotic stresses, quality and other desirable characteristics.
- To incorporate effective rust resistance genes in local germplasm.

TREATMENTS & METHODOLOGY

Total entries: 574

Sowings: 2 (during 1st and 3rd week of Nov.)

Plot size: 2 rows of 2.5 meter length each

About 850 crosses will be attempted during 2017-18

GERMPLASM GROUPS

Sr. #	Germplasm Groups	No. of varieties / lines
1	Current varieties of Pakistan	50
2	Old varieties	56
3	Exotic lines	34
4	Disease resistant	168
5	Drought tolerant	18
6	Salt tolerant	07
7	Heat tolerant	48
8	Grain quality	17
9	High grain weight	14
10	High yielding	120
11	Harvest plus	19
12	Triticum pyrum	05
13	CSISA	18
Total		574

Last year crossing block comprised of 658 entries. It has been reconstituted to face the new challenges on the basis of Information derived through a series of studies during last few years.

Sr. #	Traits	Range				
1	Plant height (cm)	75-135				
2	Days to heading	90-122				
3	Days to maturity	136-158				
4	1000 grain weight (g)	18.2-51.4				
5	Tiller/plant	6-10				
6	Protein content (%)	12.2-17.5				
7	Gluten content (%)	34-39				
8	Canopy temperature (°c)	11.2-19.2				
	(booting & anthesis)	14.6-21.4				
9	NDVI range	0.71-0.89				
	(booting & anthesis)	0.68-0.85				
10	Leaf & yellow rust reactions	0- 100 S				
11	Leaf color, size & orientation Wide range					
Numbe	Number of crosses: 857					

STUDY OF FILIAL GENERATIONS (F₁-F₇) OF BREAD WHEAT

OBJECTIVES

- To evaluate the generations in their respective environment (Heat, drought, rusts etc.).
- Selection of single plants resistant to diseases and having good plant type in $F_2 F_5$ generations (selected bulk method).
- Selection of desirable single head progenies (F₆).
- F₇ generation (single head row progenies) selection for grain yield testing in preliminary yield trials.

TREATMENTS & METHODOLOGY

F₁ generation: Under normal environment

 F_2 to F_7 : will be exposed to;

Artificial epidemic to rust condition

Heat stress

Drought stress etc

Filial Generations for 2017-18

Generations No. of crosses		Plot size
Fı	857	1 row x 2.5m
F ₂	802	12 rows×8m
F ₃	511	3 rows ×3m
F ₄	305	3 rows×3m
F ₅	189	3 rows×3m
F ₆	106	1 row, 2.5m
F ₇	95	4 rows ×4m

Filial Generations	Entries Selected at WRI, FSD	Entries Selected at Kala Shah Kaku
Fı	857	-
F ₂	511	114
F ₃	305	102
F ₄	189	66
F ₅	1680	36
F ₆	468	-
F ₇	105	-

STUDY OF PROMISING ADVANCED LINES OF BREAD WHEAT UNDER DROUGHT STRESS CONDITIONS

OBJECTIVES

 To evaluate advanced lines/varieties suitable for rainfed / water stressed areas.

TREATMENTS & METHODOLOGY

Advanced lines = 12 advance lines from different sources

Treatments = 3 sets

One set in rainfed condition, 2nd with one irrigation at reproductive stage, 3rd in normal irrigated conditions

Layout = Split plot Design

Parameters = Canopy temperature Depression (CTD),

days to 50% heading, days to 50% maturity, plant height,

chlorophyll contents with NDVI, grains per spike,

1000-grain weight and grain yield

Twelve advanced lines of bread wheat along with check varieties viz., V-13005, V-12120, V-12066, V-13371, V- V-13372, V-13338, V-13325, V-13348, V-11098, V-12304, Galaxy-13 and Fsd-08 were sown in triplicate at three levels of irrigations on November 20, 2015, one set with rain fed condition (L_0) 2^{nd} with one irrigation (L_1) and 3^{rd} with normal irrigated condition (L_2). All the agronomic practices were same except irrigation. The line V-12304 has the highest grain yield 4884 kg/ha against check under one irrigation while V-11098 has performed best under no irrigation by producing highest grain yield (3841kg/ha). Punjab-11 (5220 kg/ha) followed by V-12120 (5177kg/ha) has given highest grain yield under three irrigation treatment.

EVALUATION OF BREAD WHEAT GERMPLASM FOR POST-ANTHESIS HEAT STRESS

OBJECTIVES

- Development of heat tolerant varieties to combat the effect of global warming (Projected temp. increase is 2 °C to 4 °C by the end of this century.)
- Evaluation of bread wheat germplasm for yield and yield components under post-anthesis heat stress conditions.

TREATMENTS & METHODOLOGY

- Varieties/lines = 50,
- Set = 3 (in & out side tunnel (normal planting) & late planting
- Layout = Alpha Lattice, Reps = 2
- Post anthesis heat shock will be induced by covering the tunnel with clear poly propylene sheet for about three weeks.
- **Parameters** = days to heading, canopy temperature, chlorophyll content, plant height, days to maturity, rust reactions, Grains/spike, 1000- grain weight and grain yield.

Sr#	Genotype	Yield (kg/ha)			1000 Grain Weight (g)		
		Normal	Tunnel	Late sown	Normal	Tunnel	Late sown
1	QUAIU#1/2*SUP152	2661	1800	2224	35.3	34.1	34.6
2	V-14170	2149	1939	2042	36.1	34.8	35.5
3	V-14225	2541	1687	1825	36.4	33.9	31.6
4	KA/NAC//TRCH/3/ DANPHE#1	2831	1929	2201	33.7	31.8	32.1
5	PASTOR//MILAN/KAUZ/3/ BAV92	2723	1847	2142	40.1	34.2	32.3
6	Galaxy-13	3270	1922	2444	39.3	37.3	30.1

YIELD EVALUATION OF CIMMYT MATERIAL IN NORMAL AND LATE SOWN CONDITIONS

OBJECTIVES

To evaluate CIMMYT candidate lines under local climatic conditions.

TREATMENTS & METHODOLOGY

Entries: 650

Source: CIMMYT

Plot size: 6 rows x 5 m

Sowing time: Normal (1st week of Nov.)

Late (last week of Dec.)

Parameters: NDVI, Canopy Temperature, Days to heading, Plant

Height, Lodging Score, Days to maturity, Yield &

1000 grain weight

Eighty three (83) promising lines were selected from candidate lines received from CIMMYT for further study in yield trials. The yield performance of top five high yielding lines compared to check variety is as under

Sr No.	Entry No.	Yield (kg ha- ¹)	% increase over Punjab-11
1	4040	6316	35.97
2	4029	6232	34.16
3	4041	6170	32.83
4	4031	6077	30.83
5	3037	5942	27.92

EVALUATION OF INTERNATIONAL BREAD WHEAT MATERIAL (CIMMYT / ICARDA).

OBJECTIVES

To evaluate and select promising lines from CIMMYT / ICARDA materials for strengthening bread wheat germplasm and testing in station yield trials

TREATMENTS & METHODOLOGY

The following yield trials/nurseries are expected from (CIMMYT, ICARDA & NARC)

Sr.	Trials/ Nurseries	Source	Sr.	Trials/ Nurseries	Source	Status
No			No.			
1	38 th ESWYT	CIMMYT	11	46 th IBWSN	CIMMYT	
2	25 th SAWYT	CIMMYT	12	11 th Stem RRSN	CIMMYT	} ≧
3	9 th EBWYT	CIMMYT	13	23 rd ISPTON	CIMMYT	ll are
4	15 th HTWYT	CIMMYT	14	17 th SSR-FA/	ICARDA	
				IR ISBWYT		ğ
5	5 th WYCYT	CIMMYT	15	18 th CWANA	ICARDA	ect
				SBWON		ed
6	WPEPYT	CIMMYT	16	18 th CWANA	ICARDA	ਰੇ ਹੁੰ
				ESBWYT		ra
7	7 th HPYT	CIMMYT	17	17 th CWANA	ICARDA] ;≗
				HTSBWON		201
8	2 nd SATYT	CIMMYT	18	18 th DSBWYT	ICARDA	expected for rabi, 2017-18
9	35 th SAWSN	CIMMYT	19	NARC HPRYT	NARC] &
10	6 th CSISA	CIMMYT				

Out of fourteen international nurseries/ trials sown at WRI Faisalabad, 1306 entries were studied while 150 entries were selected for sowing to next generations.

Three trial/nurseries were planted at Kala Shah Kaku. Out of 110 entries 29 were selected to be used in further breeding programme.

11. TITLE PRELIMINARY WHEAT YIELD TRIALS (A-TRIALS)

OBJECTIVES

To evaluate the newly developed stable lines for yield and other agronomic parameters under irrigated and rainfed conditions.

TREATMENTS & METHODOLOGY

Irrigated:

Entries = 150, Check varieties =3 (Faisalabad-08, Punjab-11 and Galaxy-13)

Rainfed:

Entries = 70, Check varieties = 4 (Faisalabad-08, Chakwal-50, Dharabi-13 and Galaxy-13)

Layout = Alpha lattice, Reps = 3

PREVIOUS YEAR'S RESULTS

55 advanced lines (out of 164) of bread wheat were found higher yielding than two checks varieties in their respective trials under irrigated conditions. 33 advance lines were found higher yielder in rain fed condition than three checks (Faisalabad-08, Chakwal-50 and BARS-09).

Variety Code	Yield	Percentage Increase over check varieties			
	(kg ha ⁻¹)				
A-I (Rainfed)		FSD-08	CK-50	Galaxy-13	Dharabi-11
		3706	3688	3716	3375
V- 16233	3808	2.75	3.25	2.48	12.8
V- 16221	3773	1.81	2.30	1.5	11.8
V- 16234	3725	0.512	1.0	0.242	10.4
V- 16222	3723	0.46	0.94	0.188	103
V- 16227	3721	0.40	0.89	0.13	10.25
V- 16230	3712	0.161	0.65	-0.10	9.20
LSD (0.05)	326.04				
CV (%)	4.62				
A-II (Rain fed)		FSD-08	CK-50	Galaxy-13	Dharabi-11
		3630	3671	3724	3024
V- 16260	4165	14.73	13.45	11.8	37.7
V- 16259	3909	7.68	6.48	4.96	29.3
V- 16261	3769	3.83	2.67	1.21	24.6
LSD (0.05)	302.69				
CV (%)	4.57				
V -16287	4118	1.0	0.46	4.1	
V- 16295	4099	0.5	0	3.6	
LSD (0.05)	319.74				
CV (%)	3.91	0			

A-III Rainfed		FSD-08	CK-50	Galaxy-13	Dharabi-11
		3916	3707	3714	3488
V-16266	4397	12.8	18.6	18.4	26.1
V-16278	4026	2.8	8.6	8.4	15.4
V-16264	4028	2.9	8.7	8.4	15.5
V-16277	3994	2.0	7.7	7.5	14.5
V-16274	3988	1.8	7.6	7.4	14.3
V-16280	3986	1.8	7.5	7.3	14.3
V-16276	3954	1.0	6.7	6.4	13.4
V-16281	3872	-1.1	4.5	4.3	11.0
V-16270	3867	-1.2	4.3	4.1	10.9
V-16265	3810	-2.7	2.8	2.6	9.2
V-16282	3815	-2.6	2.9	2.7	9.4
V-16262	3804	-2.9	2.6	2.4	9.1
V-16275	3781	-3.4	2.0	1.8	8.4
V-16269	3686	-5.9	-0.6	-0.8	5.7
LSD (0.05)	325.41				
CV (%)	4.27				

AIV (Rainfed)		FSD-08	CK-50	Galaxy-13
		4078	4099	3957
V-codes		Yield	(kg ha ⁻¹)	
V-16284	4874	19.5	18.9	23.2
V-16291	4581	12.3	11.75	15.7
V-16289	4493	10.3	9.6	13.5
V-16293	4358	6.9	6.31	10.1
V-16294	4301	5.5	4.9	8.7
V-16290	4295	5.3	4.7	8.54
V-16286	4218	3.4	2.9	6.6
V-16297	4122	1.2	0.56	4.1

REGULAR WHEAT YIELD TRIALS (B-TRIALS)

OBJECTIVES

To evaluate the promising lines of bread wheat selected from preliminary yield trials for yield and other agronomic parameters under irrigated and rainfed conditions.

TREATMENTS & METHODOLOGY

Irrigated:

Entries =120, Check varieties =3 (Faisalabad-08, Punjab-11 and Galaxy-13)

Rainfed:

Entries = 34, Check varieties = 4 (Fsd.-08, Chk-50, Dharabi-13 and Galaxy-13)

Layout = alpha lattice, Reps = 3

- Thirty seven advanced lines (out of 135) of bread wheat were found high yielding than the two checks under normal conditions.
- Nine advance lines were found higher yielder in rain fed condition than three checks (Faisalabad-08, Chakwal-50 and BARS-09).

Variety Code	Yield (kg ha ⁻¹)	Percentage Increa	se over	
		check varieties		
B-I (Irrigated)		FSD-08	Galaxy-13	
V-15055	5575	20.41	13.66	
V-15079	5447	17.65	11.05	
V-15026	5371	16.00	9.50	
V-15051	5167	11.60	5.34	
V-15049	5136	10.93	4.71	
V-15044	5000	7.99	1.94	
V-15070	4979	7.54	1.51	
LSD (0.05)	266			
CV (%)	3.34			
B-II				
V-15100	6128	20.77	35.34	
V-15082	5803	14.37	28.16	
V-15081	5700	12.34	25.88	
V-15080	5317	4.79	17.42	
LSD (0.05)	271			
CV (%)	3.29			

Variety Code	Yield (kg ha ⁻¹)	Percentage Increase of	ver check varieties
B-III			
V-15113	6047	11.34	27.98
V-15102	5646	3.96	19.49
LSD (0.05)	241		
CV (%)	2.98		
BIV			
V-15168	6387	34.49	30.27
V-15174	5779	21.69	17.87
V-15166	5559	17.06	13.38
V-15156	5261	10.78	7.30
V-15153	5245	10.44	6.98
V-15147	5035	6.02	2.69
LSD (0.05)	265		
CV (%)	3.23		
B-V			
V-15192	6029	20.51	12.75
V-15203	5806	16.05	8.58
V-16166	5654	13.01	5.74
V-15179	5469	9.31	2.28
LSD (0.05)	286	CV (%)	3.44

Variety Code	Yield (kg ha ⁻¹)	Percentage Increase over check varieties	
B-VI			
V-16180	5761	15.27	19.60
V-16179	5451	9.06	13.16
V-16172	5297	5.98	9.96
V-16169	5277	5.58	9.55
LSD (0.05)	251		
CV (%)	3.07		
B-VIII			
V-16200	5691	5.00	20.55
V-16209	5497	1.42	16.44
LSD (0.05)	225		
CV (%)	2.88		
B-IX			
V-16212	6259	28.26	21.06
V-15212	5859	20.06	13.33
V-16213	5757	17.97	11.35
V-15216	5731	17.44	10.85
V-13190	5670	16.19	9.67
V-16215	5575	14.24	7.83
V-14058	5519	13.09	6.75
V-15251	5384	10.33	4.14
LSD (0.05)	272	CV (%)	3.14

Variety Code	Yield (kg ha ⁻¹)	Percentage Increase over check varieties			
B-I (Rainfed)		FSD-08	CK-50	Galaxy-13	Dharabi-11
		3799	3715	3502	3070
V-15291	4204	10.66	13.16	20.04	36.9
V-15265	3662	-3.6	-1.4	4.5	19.2
V-15309	3694	-2.7	-0.5	5.5	20.3
V-15327	3688	-2.92	-0.73	5.3	20.1
V-15311	3550	-6.5	-4.4	1.37	15.6
V-15329	3696	-2.7	-0.5	5.5	20.4
V-15331	3649	-3.9	-1.7	4.19	18.8
V-15306	3647	-4	-1.8	4.1	18.8
V-15267	3495	-8	-5.9	-0.1	13.8
LSD (0.05)	777.10				
CV (%)	10.62				

PUNJAB UNIFORM WHEAT YIELD TRIAL (PUWYT)

OBJECTIVES

To assess the yield performance and adaptability of promising lines in different ecological zones of the Punjab.

TREATMENTS & METHODOLOGY

Locations: Govt. farms in Punjab.

Contributing Institutes: AARI, BARI, AZRI, UAF, NIBGE, NIAB,

Private Sector, NARC etc.

Trials: 20, Sowing time: 2nd week of November

Design: Alpha Lattice, Plot size:1.2mx5m,

Replications:02, Fertilizer: 120-90-60 kg/ha

Entries: 60

Check varieties (02):Johar-16 and local check

Locations:23

Sowing time: 1st fortnight of November, 2017.

Ranking	Variety/line	Yield (kg ha ⁻¹)
1	V-14124	4360
2	TWS1335	4144
3	TWS1351	4129
4	V-15235	4129
5	9515	4111
6	15C042	4106
9	Johar-16	4070

NATIONAL UNIFORM WHEAT YIELD TRIALS (NUWYT)

OBJECTIVES

To confirm the yield and adaptability of elite lines contributed by the wheat breeders of Pakistan.

TREATMENTS & METHODOLOGY

- Eight lines (six for irrigated & two for rainfed) will be provided by WRI, Faisalabad.
- National Wheat Coordinator, PARC, will design the trial.
- Trials with Coded entries will be supplied to Director Wheat for planting and harvesting on the selected sites in the Punjab.

Sr.#	Entry No.	Yield (kg ha ⁻¹)
1	34	4481
2	49	4464
3	38	4444
4	31	4414
5	48	4365
6	59	4361
7	47	4342
8	15	4320

15. TITLE HYBRID SEED PROGRAM

OBJECTIVES

To maintain CMS (A), maintainer (B) and fertility restorer (R) lines

TREATMENTS & METHODOLOGY

33 A-lines (CMS lines)

33 B-lines (maintainers) will be planted in the field.

A-lines will be maintained by pollinating with its corresponding maintainer. Sixteen lines with fertility restorer gene (Rf) will also be maintained. Seed of F_1 will be planted for back crosses

PREVIOUS YEAR'S RESULTS

Thirty three CMS lines were maintained by crossing with their respective maintainer (B-lines). Sixteen fertility restorers were also maintained by selfing.

DURUM WHEAT (Triticum durum)

MAINTENANCE AND UTILIZATION OF DURUM AND TRITICALE GERMPLASM

OBJECTIVES

Enhancement of genetic variability in durum and triticale germplasm

TREATMENTS & METHODOLOGY

No. of entries = Durum: 165 and Triticale: 79, Plot size = 2 rows x 2.5 m Desirable lines will be utilized in hybridization program.

One hundred and sixty one entries of Durum and seventy nine entries of Triticale were maintained.

Sr.#	Traits	Variability range		
		Durum	Triticale	
1	Days To Heading	82 - 123	80 - 121	
2	Days To Maturity	143 - 155	144 - 157	
3	Plant Height (cm)	82 - 128	96 - 176	
4	1000-grain weight (gm)	31.34 - 46.94	-	
5	Rust Reaction (L.R)	0 - 30 S	0 - 30 S	
6	Rust Reaction (Y.R)	0 – 60 S	0 - 10 MS	

17. TITLE CROSSING DURUM WHEAT WITH BREAD WHEAT

OBJECTIVES

Introgression of genes for biotic and abiotic stresses in bread wheat

TREATMENTS & METHODOLOGY

Durum germplasm will be crossed with stable bread wheat lines/varieties.

Fifty crosses/back crosses will be developed.

PREVIOUS YEAR'S RESULTS

Fifty seven crosses were attempted out of these 50 crosses were harvested

18. TITLE STUDY OF FILIAL GENERATIONS (F_1-F_7) .

OBJECTIVES

- To advance the generations.
- To select the vigorous and disease resistant plants from segregating generations F_2 - F_7 .
- To select the homozygous and uniform lines for yield Testing

TREATMENTS & METHODOLOGY

Generations	No. of entries	Plot size
DF ₁	50	1 row x 2.5m
DF ₂	30	12 rows x 9.0m
DF ₃	25	3 rows x 3.0m
DF ₄	16	3 rows x 3.0m
DF ₅	12	3 rows x 3.0m
DE	250 S.H	1 row x 2.5m
DF ₆	(11 Crosses)	
DF ₇	45 SHRP	4 rows x 3.0m

Sr. #	Generations	Entries Studied	Entries
			Selected
1	DF_1	50	30
2	DF ₂	32	25
3	DF ₃	18	16
4	DF ₄	18	12
5	DF ₅	20	250 S.H
			(11 Crosses)
6	DF ₆	263 SHR	45 SHRP
7	DF ₇	38	11
Eleven lines from DF ₇ were promoted to preliminary yield trial.			

PRELIMINARY DURUM WHEAT YIELD TRIAL (DA-TRIALS)

OBJECTIVES

To evaluate the genotypes for yield and other agronomic parameters under irrigated conditions.

TREATMENTS & METHODOLOGY

Entries = 30

Check varieties =3 (Durum-97, Wadanak-85 and Ujala-16)

Layout = alpha lattice

Reps = 3

PREVIOUS YEAR'S RESULTS

07 advanced lines (out of 30) of durum wheat were found high yielding than check varieties Wadanak-85 and Durum-97 in their respective trials.

Variety	Yield	Percentage Increase over			
Code	(kg ha ⁻¹)	check varieties			
DA-I		Ujala-	Wadana	Durum-	
DA-1		16	k-85	97	
D-16710	5101	4.63	27.82	6.5	
D-16705	4886	0.21	22.4	2.03	
D-16707	4858	-0.36	21.71	1.45	
D-16715	4848	-0.54	21.48	1.26	
CV (%)	3.12				
DA-II		Ujala-	Durum-	Wadana	
DA-II		16	97	k-85	
D-16721	5054	18.02	53.16	8.24	
D-16725	4967	16.00	50.54	6.39	
D-16727	4774	11.48	44.66	2.24	
CV (%)	3.77				

REGULAR DURUM WHEAT YIELD TRIALS (DB-TRIALS)

OBJECTIVES

To evaluate the promising lines of durum wheat selected from preliminary yield trials for yield and other agronomic parameters under irrigated conditions.

TREATMENTS & METHODOLOGY

Entries = 30

Check varieties = 3 (Durum-97, Wadanak-85 and Ujala-16)

Layout = alpha lattice

Replications = 3

One advanced line of durum wheat was found higher yielding than all three check varieties.

Variety Code	Yield (kg ha ⁻¹)	Percentage Increase over check varieties			
DB-I		Ujala-16	Wadanak-85	Durum-97	
D-15728	5277	4.83	15.12	24.90	
D-15730	4897	-2.69	22.22	15.92	
D-16729	4795	-4.74	19.65	13.48	
D-15739	4747	-5.68	18.47	12.36	
D-15722	4613	-8.3	15.12	9.19	
D-15717	4605	-8.50	14.93	9.00	
D-15741	4448	-11.61	11.01	5.29	
D-15735	4449	-11.60	11.02	5.30	
D-15708	4283	-14.90	6.8	1.38	
CV (%)	3.6				
DB-II		Ujala-16	Wadanak-85	Durum-97	
D-16732	5230	13.50	59.47	12.7	
D-16738	4923	6.83	50.10	6.13	
D-16742	4907	6.50	49.63	5.81	
D-16744	4707	2.14	43.51	1.48	
D-16743	4695	1.88	43.14	1.22	
C.V (%)	3.45				

PUNJAB UNIFORM DURUM YIELD TRIALS (PUDYT).

OBJECTIVES

To assess the yield performance and adaptability of promising durum lines at Govt. farms in different ecological zones of the Punjab.

TREATMENTS & METHODOLOGY

Layout: RCBD, Plot Size: 1.20mx5m, Replication, Fertilizer: 120-90-0 NPK Kg/ha, Locations: 05, Entries: 12, Sowing Time: 2nd week of Nov

Variety/line	Yield (kg ha ⁻¹)
D-14717	3384
D-14707	3201
D-14731	3026
D-14705	3015
Durum.97	2943

EVALUATION OF INTERNATIONAL YIELD TRIALS OF (CIMMYT/ICARDA) DURUM WHEAT

OBJECTIVES

To evaluate the CIMMYT material for incorporation in yield trials

TREATMENTS & METHODOLOGY

International Durum Screening Nursery (IDSN) and International Durum Yield Trials (IDYT) are expected, which will be laid out according to the instructions supplied by the donor agency

48th INTERNATIONAL DURUM YIELD NURSERY Entries studied:50, Selected=15

Entry No.	Yield (kg ha ⁻¹)
723	4442
747	4356
733	4323
Durum-97 (Check)	2910

40thINTERNATIONAL DURUM YIELD TRIAL- MEDITERRANEAN DRYLAND Entries studied:24, Selected=07

Entry No.	Yield (kg ha ⁻¹)
23	4054
19	3704
22	3676
Durum-97 (Check)	2731

48th INTERNATIONAL DURUM SCREENING NURSERY Entries studied:164, Selected=19

Entry No.	Yield (kg ha ⁻¹)
E-7008	50.14
E-7025	49.4
E-7060	49.0
Durum-97 (Check)	43.32

40th INTERNATIONAL DURUM OBSERVATION NURSERY

- MEDITERRANEAN DRYLAND

Entries studied:96, Selected=10

Entry No.	Yield (kg ha ⁻¹)
E-54	49.08
E-37	48.62
E-72	48.16
Durum-97 (Check)	42.62

BARLEY (Hordeum vulgare)

23. TITLE MAINTENANCE AND IMPROVEMENT OF BARLEY GERMPLASM

OBJECTIVES

- To conserve existing genetic variability and broaden the base of genetic diversity
- To combine high yield, tolerance to biotic & abiotic stresses, quality and other desirable characteristics.

TREATMENTS & METHODOLOGY

Entries = 80, Plot size = $0.6m \times 2.5m$, 20 crosses will be attempted

Seventy eight genotypes were maintained. One line was rejected on				
the basis of poor performance and disease susceptibility				
Sr. No. Character Range				
1	Plant height 53-119 cm			
2	Days to heading 88-116 days			
3	3 Spike length 4.1-11.1 cm			
4 No. of grains per spike 12-84				

STUDY OF FILIAL GENERATIONS (F_4-F_7) OF BARLEY

OBJECTIVES

To advance generations for developing homozygous lines with desirable traits.

TREATMENTS & METHODOLOGY

Generations	Crosses	Entries	Plot size
F_4	05	05	1row x 2.5 m
F ₅	17	17	1row x 2.5 m
F ₆	09	09	4 row x 2.5 m
F ₇	16	16	4 row x 2.5 m

PREVIOUS YEAR'S RESULTS

Five entries from F_3 were harvested for planting F_4 in next year. Desirable plants were selected from Seventeen entries of F_4 , 09 F_5 and 16 F_6 entries and single heads from the selected plants were harvested. Heads of each entry were threshed in bulk to advance the generation.

PRELIMINARY BARLEY YIELD TRIALS

OBJECTIVES

To test different lines of barley for yield and other desirable traits.

TREATMENTS & METHODOLOGY

Entries = 30, Check varieties =1 (Haider-93), No. of Trials = 2

Layout =RCBD, Reps = 3, Plot size = $1.2m \times 5m$

BA1			BA2		
Rank	Line/Var.	Yield (Kg/ha.)	Rank	Line/Var.	Yield (Kg/ha.)
1	B-16012	3963	1	B-16020	3429
2	B-16009	3789	2	B-16021	3204
3	B-16003	3670	3	B-16029	3089
4	B-16011	3646	4	B-16026	3085
5	Haider-93	3551	5	B-16030	3061
	LSD (0.05)	483	6	B-16028	2993
			7	B-16024	2970
			8	B-16025	2942
			9	Haider-93	2823
				LSD (0.05)	268

REGULAR BARLEY YIELD TRIALS

OBJECTIVES

To test advanced lines of barley for yield and other desirable traits.

TREATMENTS & METHODOLOGY

Entries = 15, Check varieties =1 (Haider-93)

Layout = RCBD, Reps = 3, Plot size = $1.2m \times 5m$

	ВВ					
Rank	Line/Var.	Yield (Kg/ha.)				
1	B-15035	3905				
2	B-16045	3731				
3	B-16043	3441				
9	Haider-93	2900				
LSD (0.0	05)	295				

27. TITLE PUNJAB UNIFORM BARLEY YIELD TRIAL

OBJECTIVES

To assess yield potential of advanced lines against check variety under Different agro-climatic conditions.

TREATMENTS & METHODOLOGY

Entries = 11, Check varieties =1 (Haider-93), Layout = RCBD Reps = 3, Plot size = 1.2m x 5m

PREVIOUS YEAR'S RESULTS

On overall mean basis the advanced line B-09006 produced maximum grain yield (3364 kg ha⁻¹) followed by B-09008 (3324 kg ha⁻¹) and B-05011(3308 kg ha⁻¹) while check variety Haider-93 could produce the grain yield of 2695 kg ha⁻¹

28. TITLE INTERNATIONAL BARLEY NURSERIES AND YIELD TRIALS

OBJECTIVES

To test adaptability of different exotic genotypes of barley for yield and other desirable traits.

TREATMENTS & METHODOLOGY

Different international nurseries/yield trials (ICARDA)will be planted as per instructions of donor agency

S. No.	Trial Name	Entries studied	Entries selected
1	International Barley Observation Nursery 2016-17	112	11
2	Global Spring Barley Screening Nursery 2016-17	150	6
3	International Naked Barley Observation Nursery 2016-17	100	10
4	Global Spring Barley Yield Trial 2016-17	25	2
5	International Barley Yield Trial 2016-17	25	9
6	International Naked Barley Yield Trial 2016-17	25	7
Total		437	45

29. TITLE SOWING DATE TRIAL OF BARLEY

OBJECTIVES

To find out best sowing time of barley advanced lines.

TREATMENTS & METHODOLOGY

Entries = 11, Check varieties =1 (Haider-93), Sowing dates = 3

Layout = RCBD, Reps = 3, Plot size = $1.2m \times 5m$

Name	SD ₁	SD ₂	SD ₃	Grand Mean
B-05011	3183	3638	2546	3123
B-14035	2773	3194	2899	2955
B-14003	3198	3202	2376	2925
Haider-93	2807	2998	2242	2682

BARLEY RAINFED YIELD TRIAL

OBJECTIVES

To test different lines/varieties of barley for yield potential and other desirable traits in rainfed conditions

TREATMENTS & METHODOLOGY

Entries =15, Check varieties =1 (Haider-93), Layout = RCBD, Reps = 3, Plot size = 1.2m x 5m

PREVIOUS YEAR'S RESULTS

Twelve advanced lines performed better than check variety Haider-93. Maximum grain yield in rainfed conditions (2829 kg ha⁻¹) was obtained from advanced line B-15018. On overall mean basis B-09008 produced maximum grain yield of 3135 kg ha⁻¹ followed by B-15018 (3117 kg ha⁻¹), B-09006 (3081 kg ha⁻¹) B-05011 (2977 kg ha⁻¹) while the check variety Haider-93 could produce grain yield of 2397 kg ha⁻¹.

31. TITLE SEED PRODUCTION OF BARLEY VARIETIES AND ADVANCED LINES

OBJECTIVES

To produce pure seed of barley varieties/lines for experimental use and farmers **TREATMENTS & METHODOLOGY**

Barley varieties and advanced lines will be sown as per needs of next year planting.

Sr. No	Varieties/lines	Quantity (kg)	Sr. No.	Varieties/lines	Quantity (kg)
1	B-09006	200	16	B-16033	12
2	B-09008	175	17	B-16034	20
3	B-05011	182	18	B-16035	17
4	Haider-93	610	19	B-16036	12
5	Jau-87	21	20	B-15002	17
6	Jau-83	22	21	B-15003	10
7	B-15009	20	22	B-15005	17
8	B-15010	12	23	B-15006	9
9	B-14002	12	24	B-14003	15
10	B-14035	10	25	B-14007	17
11	B-14038	12	26	B-14011	10
12	B-15012	17	27	B-10007	11
13	B-15013	19	28	B-16031	11
14	B-15015	18	29	B-16032	14
15	B-15016	20	30	B-15018	09

AGRONOMIC STUDIES

EFFECT OF CLIMATE CHANGE ON SOWING TIME OF WHEAT CROP

OBJECTIVES

- •To determine the shift in sowing time of wheat under changing climatic scenario.
- •To explore optimum sowing time of promising lines of wheat.

TREATMENTS & METHODOLOGY

Date of sowing = 7						
$D_1 = 1^{st}$ November	D ₂ = 10 th November	$D_3 = 20^{th}$ November				
D ₄ = 30 th November	D ₅ = 10 th December	D ₆ = 20 th December				
$D_7 = 30^{th}$ December						

Varieties/Advanced lines = 12	
-------------------------------	--

Observations					
Plant count per m ²	Productive tillers/m ²				
Days to heading	Days to Physiological maturity				
Plant height (cm)	Lodging % age				
No. of grains/spike	1000-grain weight (g)				
Grain yield (kg ha ⁻¹).					

Layout	RCBD, split plot		
	arrangement		
Rep	03		
Plot size	1.62m x 6 m		
Fertilizer NPK	120-90-60 kg ha ⁻¹		
Seed Rate	100 kg ha ⁻¹		

Advanced	1 st	10 th	20 th	30 th	10 th	20 th	30 th	Mean
lines/	Nov.	Nov.	Nov.	Nov.	Dec.	Dec.	Dec.	
Varieties								
Punjab-11	5597	6262	4942	4321	4386	3783	3152	4635cd
Galaxy-13	6132	5682	4599	4462	4270	2894	2596	4376e
Ujala-16	6139	5923	4818	4242	4263	3659	3340	4626cd
V-11098	6286	6091	4835	4691	4424	3611	3498	4777bc
V-12304	6262	6063	4712	4479	4379	3937	3543	4768bc
V-12066	5912	4877	4393	4492	4115	3659	3378	4404e
V-13348	6307	5586	4530	4252	4458	3995	3368	4642cd
V-14154	6910	6166	5357	5086	5147	4043	3635	5192a
V-14225	5953	5974	4825	4763	4739	4016	3786	4865b
V-14227	4931	5785	4750	4681	4414	4084	3361	4572d
V-14168	5737	5895	4890	4657	4654	4122	3810	4824b
V-14170	6375	6519	5528	5134	4873	4297	3879	5229a
Mean	6045a	5902a	4848b	4605c	4510c	3842d	3445e	

Cd₁ for sowing dates 145, for varieties 160 and for interaction 431

33. TITLE RESPONSE OF SEED RATE ON GRAIN YIELD OF WHEAT ADVANCED LINES

OBJECTIVE

•To determine optimum seed rate of advanced lines of wheat **TREATMENTS & METHODOLOGY**

A) Varieties/Lines = 08
B) Seed Rate (kg ha ⁻¹) = 04
$S_1 = 75$
$S_2 = 100$
$S_3 = 125$
$S_4 = 150$

Layout	Split plot Design		
Rep	03		
Plot size	1.62m x 6 m		
Fertilizer NPK	120-90-60 (kg ha ⁻¹)		

Grain yield (kg ha⁻¹)

Advanced						
lines/	75	100	125	150	Mean	
Varieties	/3	75 100 125		150		
Fsd-08	5768	6461	6259	6046	6133bc	
V-13348	5370	5700	5511	5652	5558e	
V-14154	5576	7260	7089	7020	6736a	
v-14225	6101	6492	6399	6300	6323b	
V-14227	6049	6121	5888	5796	5964cd	
V-14168	6039	6530	6128	5799	6124bc	
V-14170	6512	7099	6680	6348	6660a	
V-12066	5840	6005	5881	5655	5845d	
Mean	5907c	6458a	6229b	6077b		
Cd ₁ for varieties 220, for Seed rates 165 and for V ×S= 462						

34. TITLE EFFECT OF DIFFERENT LEVELS OF FERTILIZER ON GRAIN YIELD OF WHEAT

OBJECTIVE

To explore optimum fertilizer requirement of advanced lines of wheat

TREATMENTS & METHODOLOGY

Varieties/advanced lines=08
Fertilizer levels NPK (kg ha ⁻¹)
Level $1 = 0 - 0 - 0$
Level $2 = 90 - 60 - 60$
Level 3 = 120-90-60
Level 4= 150-120-60

Layout	Split plot Design
Rep	03
Plot size	1.62m x 6 m
Fertilizer NPK (Kg/ha.)	According to treatment
Seed Rate	100 (kg ha ⁻¹)
Sowing time	1st fortnight of Nov

Grain yield (kg ha⁻¹)

Advanced	Fertilizer levels NPK (kg ha ⁻¹)			Mean	
lines/	L 1	L 2	L 3	L 4	
Varieties	0-0-0	120-90-60	120-114-60	160-171-60	
Fsd-08	3292	5230	5340	5141	4751c
V-13348	3752	5216	5316	5213	4874bc
V-14154	3841	5593	5861	5532	5207 a
V-14225	2977	5511	5703	5408	4900 bc
V-14227	3570	4379	5069	4880	4474d
V-14168	3577	5065	5950	5278	4967b
V-14170	3350	5096	5600	5079	4781bc
V-12066	2860	4520	4955	4825	4290d
Mean	3402 c	5076 b	5474a	5169 b	
Cd₁ for varieties 198, for Fertilizer rates 125.12 and for V ×F 391.51					

35. TITLE EFFECT OF IRRIGATION SCHEDULING ON DIFFERENT GROWTH STAGES OF WHEAT

OBJECTIVE

•To determine the proper stage of crop and optimum requirement of water for yield enhancement.

TREATMENTS & METHODOLOGY

Variety: Anaj-17, Plot Size: 1.62x6m, Seed rate=100 kg ha⁻¹

Layout = RCBD with 3 replications

Treatments

 T_1 = no irrigation

 $T_2 = 1$ irrigation (at crown root stage)

 $T_3 = 2$ irrigations (1st at crown root and 2nd at booting)

 T_4 = 2 irrigations (1st at crown root and 2nd at heading)

 $T_5 = 2$ Irrigations (1st at crown root and 2nd at grain filling)

 T_6 = 3 irrigations (1st at crown root, 2nd at booting and 3rd at heading)

 $T_7 = 3$ Irrigations (1st at crown root, 2nd at booting and 3rd at grain filling)

 $T_8 = 3$ Irrigations (1st at crown root, 2^{nd} at heading and 3rd grain filling)

 T_9 = 4 irrigations (1st at crown root, 2nd at booting, 3rd at heading and 4th at grain filling)

 T_{10} = 5 irrigations (1st at crown root , 2nd at stem elongation, 3rd at booting, 4th at heading and 5th at grain filling)

Treatments	Mean yield (kg ha ⁻¹)
$T_1 = $ no irrigation	3160 f
$T_2 = 1$ irrigation (at crown root stage)	3990 e
$T_3 = 2$ irrigations (1 st at crown root and 2 nd at booting)	4483 cd
$T_4 = 2$ irrigations (1st at crown root and 2nd at heading)	4189 de
$T_5 = 2$ Irrigations (1st at crown root and 2nd at grain filling)	4934 bc
$T_6 = 3$ irrigations (1st at crown root, 2nd at booting and 3rd at heading)	5240 ab
$T_7 = 3$ Irrigations (1st crown root, 2nd at booting and 3rd at grain filling)	5442a
$T_8 = 3$ Irrigations (1st at crown root, 2nd at heading and 3rd grain filling)	5115ab
$T_9 = 4$ irrigations (1st at crown root, 2nd at booting, 3rd at heading and 4th at	
grain filling)	5008 ab
$T_{10} = 5$ irrigations (1st at crown root, 2nd at stem elongation, 3rd at booting, 4th at	
heading and 5 th at grain filling)	5048 ab
LSD (0.05) =461	

PATHOLOGICAL STUDIES

INVESTIGATION ON NEWLY EMERGING FOLIAR DISEASES OF WHEAT UNDER CHANGING CLIMATIC CONDITIONS

OBJECTIVES

 To determine the prevalence/status of newly emerging foliar diseases of wheat with major emphasis on wheat blast, in different agro ecological zones of Punjab.

TREATMENTS & METHODOLOGY

- The survey will be conducted in two phase
 - 1st Phase pre harvest (Last week of Feb to Last week of March) &
 - 2nd Phase after harvest (Mid April to Mid May)
- Infected wheat leaf/spike/seed samples will be collected from lines of PWYT and NUWYT throughout the Punjab.
- These samples would be analyzed in Pathology Lab. to identify the pathogens

The result indicates that all the surveyed wheat fields were free from visual typical symptoms of blast i.e. brown to whitish discoloration of spikes. However, the symptom of foliar blight was observed at scattered locations and disease suspected samples was collected and analysed in Lab. for pathogen identification. The lab analysis report revealed that non of the sample showed the presence of wheat blast pathogen (Magnaporthe oryzae Triticum pathotype (Mot). While other pathogens like Alternaria spp., and Drechslera spp. were isolated from collected disease samples.

.

DISEASE TRAP NURSERIES.

OBJECTIVES

- To trap the early landed rust inoculums and its multiplication.
- To monitor the rust virulence pattern at different locations.
- To observe the blast symptoms on foliar part of plant especially head/spike.

TREATMENTS & METHODOLOGY

No. of entries	LR Differentials = 40, YR Differentials = 28, SR Differentials = 16 Commercial Varieties/lines = 200
Check	Morocco at border and every 10 th entry
Sowing Date	Mid November to Mid December
Plot Size	2 rows x 2 m
Assessment Scale	Rust data will be recorded on Modified Cobb's Scale.

Leaf rust was trapped on 11-12-2016 while yellow rust on 17-02-2017 in 1st trap nursery.

The results regarding virulence pattern are given in table below:

The isogenic lines showed resistant response to leaf		
and stripe rusts.		
Isogenic lines	Lr 19, Lr 25, Lr 27 +31, Lr 28,Lr 29, Lr	
for LR	35, Lr 36, Lr 37 and Lr 23+Gaza	
Isogenic lines	Yr 5, Yr 10, Yr 15, Yr 24, Yr 26, Yr 28	
for YR	and YrCV	
Isogenic lines	none of the tested entries showed	
for SR	the symptoms of stem rust during	
	2016-17.	

ESTABLISHMENT OF HOST RESISTANCE (RUSTS) PRE-BREEDING NURSERY

OBJECTIVES

- To identify the designated durable rust resistant genes i.e. LR34/YR18, LR46/YR29 as well as SR2/YR30 on the basis of phenotypic markers i.e. Ltn1, Ltn2 & Psedu black chaff.
- To strengthen the rust resistant breeding program.

TREATMENTS & METHODOLOGY

No. of entries	~ 400
Check	Morocco at border and every 10 th entry
Sowing Date	Mid of November
Plot Size	2 rows x 2 m
Observations	 Rust data will be recorded on Modified Cobb's Scale. Morphological markers i.e. Ltn1, Ltn2 & Psedu black chaff will be used for the identification of resistant genes i.e. LR34, LR46 & SR2 respectively All the entries will be evaluated for important agronomic parameters.

Parameters	No of entries
Pseudo black chaff	21
Leaf tip necrosis	36
Low infection type to LR	146

Entries showing promarkers	esence of slow rusting genes on the basis of morphological
Morphological	Lines/Varieties
Markers	
Leaf tip necrosis (Ltn)	6137, 6119, 6130, 6142, 6143, 6147, 6162, 6163, 6164, 6208, 6232, HRS-1, HRS -10, HRS -12, HRS -16, HRS -50, HRS -52, HRS -58, HRS -68, HRS -71, HRS -75, HRS -136, HRS -148, HRS -161, HRS -162, HRS -170, HRS -175, HRS -181, HRS -187, HRS -206, HRS -216, HRS -217, HRS -219, HRS & HRS -274
Psedu black chaff (Pbc)	6067, 6163, 6191, 6208, 6213, 6222, HRS-11, HRS-28, HRS -76, HRS-118, HRS-124, HRS-129, HRS -132, HRS -136, HRS -144, HRS -153, HRS -164, HRS -206, HRS-208, HRS-221 & HRS -253

SCREENING OF WHEAT AND BARLEY ADVANCED LINES/VARIETIES AGAINST RUSTS AT DIFFERENT LOCATIONS

OBJECTIVES

To screen advanced lines of wheat and barley against leaf, yellow and stem rusts at adult stage.

TREATMENTS & METHODOLOGY:

No. of entries	500
Susceptible Check	Morocco at boarder & at every 10 th entry
Sowing Date	2 nd and 3 rd week of November
Plot Size	1 row x 2 m
Rust	At adult plant stage
Assessment date (s)	2 nd and 4 th week of March

All the test entries were free from stem rust, however, among tested entries, Twenty three entries showed susceptible reaction to leaf rust Seven showed susceptibility to yellow rust while, twenty entries showed susceptible reaction to both rusts (YR & LR).

Moreover, the entry showing rust rating up to 30 MRMS under stress condition was promoted / selected for further evaluation.

EVALUATION OF ADVANCED LINES/VARIEITIES FOR SEEDLING AND ADULT PLANT RESISTANCE TO LEAF RUST

OBJECTIVES

To identify rust resistant genes in advanced lines/varieties of wheat.

TREATMENTS & METHODOLOGY

For Seedling Study

- The seed of different lines/varieties will be sown in pots.
- After 7-9 days of germination, the plants will be inoculated with leaf rust.
- The inoculated plants will be kept in dew chamber at 15-20 °C and 100 % relative humidity for 12 hours and then shifted into glass house.
- After 14-16 days of inoculation, scoring will be done for leaf rust.

For Adult Plant Study

- Inoculation of rust to create artificial epidemic conditions will be done in field.
- Rust data will be recorded twice at adult plant stage.

For Molecular Study

Molecular markers will be applied for gene identification.

Among test entries, Twenty four entries

i.e. V-12066, V-14168, V-14057, V-14122, V-15235, V-15238,V-15249, V-15250, V-13165, V-13192, NR-448, NR-491, NS-13, WV-1038, 13FJ20, 13FJ29, 15CO42, 15CO44, TWS-1351, TWS-1334, TWS-1335, TWS-1355, 15B1131 and 13B3044 showed low infection type (score 0, ; ,1 & 2) at seedling stage.

While the fifteen entries showed resistant to moderately resistant response in field and the lines, which showed the resistant to moderately resistant response in field and high infection type at seedling stage indicates the presence of APR genes.

SCREENING OF ADVANCED WHEAT MATERIAL AGAINST KARNAL BUNT (Tilletia indica).

OBJECTIVES

To identify bunt resistant material for utilization in hybridization program.

TREATMENTS & METHODOLOGY

- Advanced lines/varieties of wheat will be tested under inoculated condition in the field.
- The trial will be sown in two different sowing dates in order to minimizing the chances of disease escape (1st set during 2nd week of Nov. & 2nd set during 2nd week of Dec.)
- Each entry will be sown in single row of 1 m.
- The inoculum will be prepared and spore suspension will be injected by Syringe method to 10 heads of each variety at boot stage.
- Disease incidence and severity of each spike will be recorded according to the scale of Augil et al., (1989).

Scal	le	Reaction	No. of lines/varieties	No. of Entries
0	No Symptoms of bunt on head and grains	HR	V-14154, 14B-1005, V-15238, 13FJ29, V-14266, TWS1355, V-15207, Uqab-2002, Shafaq-06 & MH-97	10
1	1% or less grains bunted	R	V-14168, HYT-27-21, V-14270, 13FJ29, V- 14117, 14B-1572, V-13192, V-15249, HYT- 60-7, V- 14215C044, V-14057, WV-1038, Ujalla-16 & Millat-11	15
3	1-2 % of grains bunted	MR	13FJ20, 13-3044, V-12066, NR-499, NS- 13,V-13348, TWS1335,, AARI-11, AaS-11, Inqilab-91 & Lassani-08	11
5	2-5 % of grains bunted	MS	V-14170,HYT-27-11, 15C042, HYT-60-57, TWS1334, 9515, V-15235, TWS1351, V- 14225, V-14124, NR-505, Gandum-4, 12FJ- 26, Wattan, Pak-81, Blue Silver & Passban-90	17
7	5-10 % of grains bunted	S	V-15211, NR-488, V-14262, V-15210, V-12066, , HYT-60-5, 9496, NR-487, TWS-12-245, Punjab-11, Fsd-08 & Shalimar-88	12
9	More than 10% of grains bunted	HS	V-13165, V-15210, 15B-1116, 13FJ35, V- 15250, NS-14, V-14271, V-14122, 14BT022, , NR-448, V-14268, V-14269,V-14057, V- 14084 15C042, 9515, V-15235,Lyalpur-73 & AS-02	19

42. TITLE SURVEY OF KARNAL BUNT AND BLACK POINT OF WHEAT

OBJECTIVES

 To find out the prevalence of karnal bunt and black point diseases in different agro ecological zones of Punjab.

TREATMENTS & METHODOLOGY

- Grain samples (250 grams each) will be collected from lines of MWYT and NUWYT throughout the Punjab.
- These samples would be analyzed in Wheat Pathology Lab.
- The disease prevalence of karnal bunt and black point diseases will be recorded on the basis of following formula;

Disease prevalence (%age) = No. of infected samples / total X 100

	Infected Samples										
	I	NUWYT (out o	of 60 sampl	es)		PWYT (out	of 60 sample	es)			
Locations	Karr	nal Bunt	Blac	k Point	Kar	nal Bunt	Blac	k Point			
	Infected	Prevalence (%)	Infected	Prevalence (%)	Infected	Prevalence (%)	Infected	Prevalence (%)			
Kot Nina	46	76.6	33	55.0	19	31.6	28	46.6			
K.S. Kaku	14	23.3	21	35.0	11	18.3	14	23.3			
R.Khurd	06	10.0	23	38.3	02	3.3	13	21.6			
Gujjarwala	04	6.6	11	18.3	04	6.6	06	10.0			
Khannewal	0	0	18	30.0	0	0.0	11	18.3			
Sahiwal	0	0	13	21.6	0	0.0	09	15.0			
Faisalabad	03	5.0	17	28.3	01	1.6	08	13.3			
Sargodha	0	0	29	48.3	0	0.0	13	21.6			
Pakpattan	04	6.6	18	30.0	01	1.6	10	16.6			
Bahwalnagar	07	11.6	12	55.0	03	5.0	09	15.0			
Total	84	14.0	195	32.5	41	6.8	121	20.1			

Note: Disease prevalence (% age) = No. of infected samples/total X 100

WHEAT ENTOMOLOGY

EFFECT OF DIFFERENT CLIMATIC FACTORS ON APHID POPULATION IN WHEAT CROP

OBJECTIVES

To know the population intensities of wheat aphid in relation to climatic factors.

TREATMENTS & METHODOLOGY

Three Moericke Yellow water tray traps will be installed at 200ft distance in three different fields of wheat crop at the height of 75cm from the ground level. Daily alate aphid population will be recorded from three Moericke yellow traps and later on data will be transformed into weekly basis. The weekly counts of trapped alate aphids will be correlated with climatic factors by taking average aphid population throughout the season

Month	Temp	perature C ⁰	Humidity (%)	Rain fall/week	Av. Aphid population.	Av. Aphid pop./Trap/d
Month	Max C ⁰	Min C ⁰	(mm)	(mm)	/Trap/week	ау
January,2017						
1 st week	18.75	10.17	91.43	0	98.28	14.04
2 nd week	18.06	4.16	84.37	4.8	140.0	18.25
3 rd week	18.70	4.97	86.87	0	203.96	25.47
4 th week	18.76	8.42	88.50	7.1	250.8	31.35
February,2017						
1 st week	20.83	6.97	85.43	3.7	314. 37	44.91
2 nd week	24.28	5.6	76.14	0	333.90	47.7
3 rd week	26.95	12.28	76.71	0	361.76	51.68
4 th week	27.14	8.78	71.43	0	458.71	65.53
March,2017						
1 st week	26.44	11.54	75.29	1.7	1229.9	175.7
2 nd week	22.03	10.93	78.12	14.4	1636.32	204.54
3 rd week	30.41	14.36	72.75	0	1882.24	235.28
4 th week	week 35.82 19.44		62.25	0	1178.8	147.35
April,2017						
1 st week	33.75	19.44	58.57	9	135.94	19.42

VARIETAL SCREENING OF WHEAT AGAINST APHID IN RELATION TO CLIMATIC AND BIOTIC FACTORS

OBJECTIVES

- To evaluate the wheat varieties / advance lines against aphids.
- The determine correlation of aphids with predators

TREATMENTS & METHODOLOGY

Design: RCBD, Reps:3, Plot size: 5m x 1.8m.

The data regarding aphids, *Coccinellids, chrysoperla and syrphid* fly will be recorded during the month of march, 2016 till crop maturity at 10 day interval per tiller and plant basis for aphid and predators, respectively by selecting randomly 10 tiller/ plants per plot.

Varieties/ lines will be screened out by taking average aphid population throughout the season.

Varieties /Lines	Aphid population per tiller
V1-11098	12.610
Punjab	29.410 C
Galaxy-13	15.590 EF
Ujala-16	24.487 D
V-12304	17.087 E
V-12066	13933EF
V-13348	43.320 A
V-14154	33.900B
V-14225	24.023D
V-14227	31.030BC
V-14168,	34.400B
V-14170	17.410E
LSD Value at @ 0.05	3.7457

MASS SCREENING OF WHEAT GERMPLASM AGAINST APHIDS

OBJECTIVES

To find out resistant/ tolerant varieties/lines against aphid attack.

TREATMENTS & METHODOLOGY

The data will be recorded on 10 days interval from 10 randomly selected tillers on each lines/variety especially during the month of March, 2018.

Material	Total		Average Aphid population/ Tiller on each variety/line									
	Entries		(Mean values)									
Crossing	658	0-5	6-10	11-15	16-25	26-35	36-45	46-55	56-65	66-75	76-85	>86
block		0	51	180	281	76	36	16	11	4	2	1

SURVEY OF APHID POPULATION ON WHEAT CROP IN DIFFERENT CLIMATIC ZONES OF THE PUNJAB DURING FEBURARY TO MARCH

OBJECTIVE

To find out the occurrence and fluctuation of aphids population on wheat crop in different climatic zones of the Punjab

TREATMENTS & METHODOLOGY

Aphid population and their predators will be recorded from different wheat varieties sown in different ecological zones per tiller/plant basis, respectively.

The data will be recorded during the month of February and March, 2018

The survey revealed that the aphid population ranged from 4.0-22.0 aphids/tiller on different wheat varieties in the Punjab. While regarding wheat varietal basis aphid population remained in the range 4-12,7-14,10-21,12-22,9-19,11-20 and 9-20 per tiller on Fsd-08, Lasani-08, Galaxy-13,Punjab-11, Johar-16, Glod-16 and Ujala-16, respectively. So aphid population was recorded more in Narowal on Punjab-08 and low in Gujranwala on Faisalabad- 08. Therefore, the aphid population during the season was not so alarming and the natural enemies (Coccinellids, Chrysoperlla Spp. Syrphid flies and etc) controlled the pest naturally and therefore no pesticides should be recommended for aphid control.

SEED PRODUCTION

PRODUCTION OF BREEDERS NUCLEUS SEED OF WHEAT ADVANCED LINES AND VARIETIES

OBJECTIVES

- To maintain true to type seed of bread/durum wheat varieties.
- To obtain the phenotypic stability of advanced wheat lines.

TREATMENTS & METHODOLOGY

- •40-200 single heads of all commercial varieties and elite lines will be planted in 2.5 meters long row.
- •Head rows of each commercial variety will be observed at different stages of plant development.
- •Head rows deviating from the original variety will be discarded.
- •Uniform vigorous head rows will be harvested and threshed separately for further study as head rows progenies

Sr. No.	Varieties/ lines	No. of heads	Sr. No.	Varieties/ lines	No. of heads
1.	Punjab-11	160	18.	V-13016	40
2.	Millat-11	160	19.	V-13167	40
3.	AARI-11	40	20.	V-13325	40
4.	Faisalabad-08	80	21.	V-13338	40
5.	Lasani-08	40	22.	V-13348	40
6.	Pasban-90	40	23.	V-13372	40
7.	Uqab-2000	40	24.	V-14151	40
8.	Galaxy-13	160	25.	V-14152	40
9.	Ujalla-16	160	26.	V-14153	40
10.	V-11098	160	27.	V-14154	40
11.	V-11160	160	28.	V-14168	40
12.	V-12001	80	29.	V-14170	40
13.	V-12066	80	30.	V-14225	40
14.	V-12120	80	31.	V-14227	40
15.	V-12304	160	32.	HYT-08-7	40
16.	V-13001	80	33.	HYT-08-34	40
17.	V-13005	80	34.	HYT-08-44	40

48. TITLE PRE-BASIC SEED PRODUCTION OF BREAD AND DURUM WHEAT CULTIVARS AND ADVANCED LINES.

OBJECTIVES

To produce pure seed of commercial wheat cultivars/lines for supplying to the Punjab Seed Corporation and Private Seed Companies

TREATMENTS & METHODOLOGY

Two to four kanals of 10 cultivars/lines will be sown using seeds of selected head rows for head row progeny. Each single head row progeny will be planted 24m x 1.65m and field will be inspected at different stages of plant growth.

Sr.#	Varieties	kg	Sr.#	Varieties	kg
1.	Faisalabad-08	500	5.	Punjab-11	500
2.	Lasani-08	200	6.	Galaxy-13	585
3.	AARI-11	100	7.	Ujalla-16	800
4.	Millat-11	280	8.		

SEED PRODUCTION OF BREAD AND DURUM WHEAT CULTIVARS AND ADVANCED LINES

OBJECTIVES

To produce pure seed of commercial wheat cultivars/lines for farmers

TREATMENTS & METHODOLOGY

One to four acres of the following cultivars will be sown

Sr. #	Varieties/lines	Sr. #	Varieties/lines
1.	Punjab-11	8	V-12304
2.	Faisalabad-08	9	V-12066
3.	Lasani-08	10	V-14225
4.	Galaxy-13	11	V-14227
5.	Ujala-16	12	V-14168
6	V-13348	13	V-14170
7	V-14154		

Sr. #	Varieties	kg	Sr. #	Varieties	kg
1.	Faisalabad-08	5600	6.	V-11098	1500
2.	Lasani-08	2800	7.	V-12304	1400
3.	Punjab-11	2600			
4.	Ujalla-16	5000			
5.	Galaxy-13	8100			

CEREAL TECHNOLOGY

Estimation of acrylamide compound in various baked products of wheat flour

OBJECTIVE

To determine the amount of acrylamide in various baked products

TREATMENTS & METHODOLOGY

Wheat grains of Galaxy-13, Ujala-16 and Anaaj-17after harvest will be collected and ground into flour (using Quadrumate Senior Mill) and developed into various baked products i.e. biscuits, cake and bread. Sample preparation of these products will be done according to protocol. These samples will be run in the High Performance Liquid Chromatograph (HPLC) along with the standards of acrylamide. Peaks will be obtained and interpreted.

Products	Acryl amide Concentration (ppb)					
Products	Ujala-16 Galaxy-13					
Biscuit	287	275				
Bread	249	267				
Cake	255	263				

Varieties: Ujala-16 and Galaxy-13, Products: Biscuits, cake and bread, Equipment: (HPLC). Acrylamide, Range: 250 to 300 ppb.

IMPACT OF SOWING TIME ON IRON AND ZINC CONTENTS IN WHEAT GRAIN

OBJECTIVE

• To determine the variation in iron and zinc contents due to different sowing time in wheat varieties.

TREATMENTS & METHODOLOGY

Grains of three promising bread wheat varieties i.e. Galaxy-13, Ujala-16 and Anaaj-17 will be collected from three planting dates i.e. 1st November, 30th November and 30th December. Collected samples will be ground and analyzed through Spectrophotometer to determine their phytic acid and iron contents. Zn contents will be determined using Atomic Absorption Spectro-photo meter.

.,	Iron Content (ppm)			Zinc (Zinc Content (ppm)			Phytic Acid Content (%)		
Varieties	D1	D2	D3	D1	D2	D3	D1	D2	D3	
Millat-11	137	141	144	31.0	31.0	33.2	1.72	1.86	1.96	
Punjab-11	135	142	142	32.5	32.2	32.7	1.82	1.90	1.97	
Galaxy-13	136	142	143	30.2	33.0	33.0	1.83	1.78	2.05	
Ujala-16	137	142	143	31.5	33.7	32.9	1.87	1.88	2.00	

Varieties: Millat-11, Punjab-11, Galaxy-13 and Ujala-16

Planting dates :1st November, 30th November and 30th December.

There was no significant difference among varieties but sowing date impact on iron

was significant

52. TITLE QUALITY EVALUATION OF BREAD WHEAT ADVANCED LINES/VARIETIES

OBJECTIVE

To screen advanced lines for different quality traits.

TREATMENTS & METHODOLOGY

Advanced lines Selected in NUWYT & PUWYT

Parameters:

Thousand grain weight (using seed counter & electric balance), Test weight (through bushel weight apparatus), Protein contents (using Kernelyzer), Starch contents (using Kernelyzer), Gluten contents (using Kernelyzer), α amylase activity (through falling number), Bread making (through dough pin mixer, baking oven and fermentation cabinet), Chapatti quality (using mixer and hot plate).

Trials	1000 grain	Test Wt.	Protein	Starch	Gluten
	wt. (g)	(kg hl ⁻¹)	(%)	(%)	(%)
NUWYT (I)	28.35-46.15	64.9-73.6	52.8-56.6	12.9-15.9	22.5-34.0
NUWYT (R.F)	31.85-41.20	69.1-79.4	52.2-55.8	12.9-16.1	23.0-35.5
PUWYT (I)	34.25-41.20	66.4-78.4	52.9-56.8	12.3-16.2	22.5-33.5
PUWYT (R.F)	29.00-41.20	60.5-77.2	50.6-56.3	13.4-15.8	24.0-39.5

No. of lines=240 (NUWYT & PUWYT)

The average values for thousand grain weights and test weight were 37 g and 70 kg/hl respectively. Whereas, average values for protein and gluten contents were 14.5% and 28%, respectively. Chapatti and bread quality scores were also within desirable range.

EFFECT OF PLANTING TIME ON GRAIN QUALITY TRAITS

OBJECTIVE

To study the effect of planting time on grain quality traits

TREATMENTS & METHODOLOGY

•Number of varieties: Twelve

Analyzed parameters:

-1000-grain weight: (using seed counter & electric balance)

-Test weight: (using bushel weight apparatus)

-Protein content: (Kernelyzer)
-Gluten content: (Kernelyzer)

-Starch content: (Kernelyzer)

-Alpha amylase activity and dough rheology will also be determined through falling number apparatus and farinograph

Parameters	D1	D2	D3	D4	D5	D6	D7
1000 grain weight (g)	33.40-44.03	31.67-41.73	27.93-34.03	27.37-32.55	26.70-37.57	23.93-30.67	23.67-29.53
Protein (%)	13.2-14.8	13.0-15.4	14.2-15.8	14.2-15.6	12.2-15.5	13.1-15.3	12.7-15.1
Gluten (%)	24.7-30.3	23.3-30.3	26.3-33.7	26.3-31.7	20.0-30.7	23.7-31.0	22.5-29.7
Starch (%)	50.0-56.5	53.5-56.0	53.2-54.8	53.4-54.9	53.4-56.4	53.1-55.8	53.2-55.5

Advanced lines=12, Dates:7, Samples=252, Reps:3

Ujala-16 was the topper with 44.03 g weight in first sowing date i.e. 1st November, which was the most favorable planting date in regards to 1000 grain weight, followed by D2. Whereas, D7 scored the least in this regard. Faisalabad-08 remained ever green regarding chapatti quality scoring highest marks in wet gluten content (33.7 % in D3 i.e. Nov. 20). Protein content was the highest in D3 and D4, but the overall results of the protein percentage were quite acceptable. V-14225 gave the highest protein score on average of all sowing dates and individually at D3, i.e. 15.1% and 15.8%, respectively

54. TITLE | EFFECT OF DIFFERENT FERTILIZER TREATMENTS | ON WHEAT GRAIN QUALITY

OBJECTIVES

To study the effect of fertilizer combinations and time of their application on physico-chemical quality parameters in advanced wheat lines/varieties.

TREATMENTS & METHODOLOGY

Advanced wheat lines incorporated in fertilizer trial for the year 2017-18 will be tested for comprehensive quality parameters especially grain weight (using seed counter & electric balance), test weight (through test weight/bushel weight apparatus), starch, gluten and protein, contents using Kernelyzer).

- 1000 kernel weight, F₁ treatment contributed the top most average followed by F₃.
 The prominent variety with the highest average scores in 1000 grain weight in all treatments was V-14170, followed by V-14154 which also had the maximum count 42.4 g.
- **Test weight** has mostly excelled in the F_2 treatment. V- 12066 have shown promising results regarding test weight, by having a good average score of 74.8 kg/hL with the fertilizer treatments and varietal comparison. Fsd-08 revealed the highest test weight 76.6 kg/hL with the application of F_2 .
- V-14170 gave prominent **starch** results at individual treatments i.e. F_{2} , F_{3} and F_{4} and with maximum starch content of 56.7%.
- F₄ revealed the highest protein and gluten range. V-14225 excelled in all four fertilizer treatments with the highest protein and gluten content on average basis and giving the topmost protein and gluten content, i.e. 15% and 30.3%, respectively.
- Assessing the fertilizer combinations, it has been concluded that maximum quality parameters showed their best potentials and indicated visibly better averages at F₃ treatment.

Treatments	1000 Grain wt.			Protein %			Gluten %					
Varieties/	F1	F2	F3	F4	F1	F2	F3	F4	F1	F2	F3	F4
Lines		. 2				. 2	. 3					
Fsd-08	40.2	38.2	35.6	37.4	9.9	12.1	12.9	13.6	16.0	24.0	26.3	28.0
V-14154	42.4	40.2	40.2	39.3	10.0	11.6	12.7	12.3	15.7	22.3	21.0	23.0
V-14225	36.7	35.1	38.0	35.1	10.9	14.2	13.8	15.1	15.7	27.7	27.7	30.3
V-14170	41.5	40.9	43.0	40.2	10.8	10.9	12.1	12.1	17.3	15.3	20.0	18.3
V-14168	41.2	40.1	38.6	39.6	10.6	11.6	12.8	12.7	14.7	17.3	20.7	22.0

Fertilizer levels NPK (kg ha⁻¹)

$$F_1 = 0 - 0 - 0$$
, $F_2 = 90 - 60 - 60$, $F_3 = 120 - 90 - 60$, $F_4 = 150 - 120 - 60$

DETERMINATION OF QUALITY TRAITS IN PRELIMINARY AND ADVANCED LINES OF BARLEY

OBJECTIVE

To evaluate high yielding barley lines for different quality parameters

TREATMENTS & METHODOLOGY

- •Quality parameters to be evaluated :
- -1000 kernel weight, -test weight, -protein content

PREVIOUS YEARS' RESULTS

Daramatara	Planting Dates						
Parameters	D1	D2	D3				
Test wt. (kg/hL)	50.2-59.4	47.3-58.3	45.3-57.7				
1000 grain wt. (g)	30.7-41.9	28.5-40.1	30.5-38.7				
Protein (%)	11.3-14.3	12.5-14.6	12.3-13.9				

EFFECT OF DIFFERENT TEMPERING CONDITIONS ON MILLING YIELD IN RELATION TO DOUGH EXTENSIBILITY

OBJECTIVE

To determine the correlation of flour yield and dough extensibility

TREATMENTS & METHODOLOGY

•Wheat varieties: Galaxy-13, Ujala-16 & Anaaj-17

•Moisture levels: 14.5%, 15.0%, 15.5%, 16.0%

•Time intervals: moisture contents of 14, 15 and 16%

for time intervals of 8, 16, & 24 hours

•Milling equipment: Buhler mill

Four promising varieties i.e., Punjab-11, Millat-11. Galaxy-13 & Ujala-16 were selected for the study at four moisture levels. The most suitable moisture to get maximum flour yield during milling was 15% at 16 hours for Punjab-11 and 15.5% for Ujala-16 soaked for the same time duration i.e. 16 hours.

SHUTTLE BREEDING

Wheat Research Sub Station, Murree

57. TITLE | SUMMER DISEASE SCREENING NURSERY

OBJECTIVES

A set of germplasm including advanced lines and existing varieties screened against available races of yellow and stem rust

TREATMENTS & METHODOLOGY

Germplasm consisting of different wheat lines will be sown in the small pots in green house under controlled conditions.

At seedling stage the lines will be inoculated with rust spores for the development of infection. Reaction type will be then recorded to evaluate the resistant and susceptible material.

PREVIOUS YEAR'S RESULTS

A of set 192 lines were inoculated with stem rust RRTTF race. Advanced material was found to be resistant against this race.

SEED INCREASE OF RUST DIFFERENTIAL SETS (NEAR ISOGENIC LINES)

OBJECTIVES

To produce sufficient quantity of differential seed for their use in the rust analysis

TREATMENTS & METHODOLOGY

Near Isogenic lines representing the differential sets for each type of rust disease will be sown in field plots during March —April 2018. Spikes will be harvested at maturity and seed will be saved for use in next analysis. A set of 192 wheat lines were sown in field area. Upon maturity seed of these lines was harvested and send back to main station.

PREVIOUS YEAR'S RESULTS

17, 12 and Near Isogenic lines differential of stem rust and yellow rust, respectively were planted separately at Wheat Research Sub-Station, Murree. On maturity spikes were collected and seeds were saved for next cycle of race analysis.

OFF- SEASON TRAILS OF ADVANCED GENERATIONS

OBJECTIVES

Off season trails of wheat advanced generations to speed up the variety development process

TREATMENTS & METHODOLOGY

A Set of germplasm including wheat advance lines will be sown in field area.

PREVIOUS YEAR'S RESULTS

A set of 192 wheat lines were sown in field area. Upon maturity seed of these lines was harvested and send back to main station.

RICE RESEARCH INSTITUTE, Kala Shah Kaku

DEVELOPMENT OF HIGH YIELDING AND DISEASE RESISTANT WHEAT VARIETY FOR RICE ZONE

OBJECTIVES

- To develop high yielding, disease resistant and well adapted wheat varieties for rice zone.
- To screen wheat germplasm against rusts.

TREATMENT AND METHODOLOGY

Following material will be planted:

- Track record of wheat varieties
- Segregating generations
- Local Disease screening nursery (LDSN).
- Advanced lines evaluation trial.
- PUWYT and NUWYT

SELECTED VARIETIES/LINES IN TRACK RECORD OF WHEAT VARIETIES

Varieties/ lines	Yield	Disease reaction		Varieties/	Yield	Disease reaction	
		Lr	Yr	iiiies	Kg/ha	Lr	Yr
V-13001	2616	0	0	Jauhar-16	2374	TMS	0
Galaxy-13	3146	30M	20M	AB-16	2492	0	0
CK-50	2968	20M	0	CD-16	2255	0	0
Lassani-08	2849	5M	10M	Punjab-11	2255	TMS	20M
Ujala-16	2962	5M	0	V-11160	2255	0	0
AARI-11	2849	TM	0				
FSD-08	2611	10M	0				
Gold-16	2493	TM	0				
V-08086	2314	0	0				

FILIAL GENERATIONS:

In segregating generations, 206 entries of $F_{2,}$ 167 entries of F_{3} ,76 entries of F_{4} and 41 entries of F_{5} were studied. Out of them 114,102,66 and 36 entries were selected respectively on the basis of plant aspects and disease reaction.

LOCAL DISEASE SCREENING NURSERY (LDSN).

Out of 209 tested entries, 28 advanced lines from NUWYT, PUWYT, A, B trials as well as commercial varieties showed susceptible reaction to rusts while the remaining entries showed resistant to moderate resistant disease reactions.

NATIONAL SCIENCE FOUNDATION

Effect of low, medium and high salinity on yield of tested wheat/barley varieties

On overall mean basis the tested wheat variety AgCS produced maximum yield (2219.9 kg/ha) followed by Uqab.2000 (2157.4 kg ha⁻¹) and CSLe (1868 kg ha⁻¹) while Yecora Rojo produced minimum yield (951.3 kg ha⁻¹) under low, medium and high salinity levels

ADVANCED LINES EVALUATION TRIAL

The trial consisted of 25 entries including local check variety Ujala-16. Seven lines (V.15101, V.16178, V.15090, V-16169,V-16174, V-16180 and V.15153) gave higher yield 4444 kg ha⁻¹ 4234 kg ha⁻¹ 4078 kg ha⁻¹ 4074 kg ha⁻¹, 4074 kg ha⁻¹, 3996 kg ha⁻¹ and 3909 kg ha⁻¹ than Check variety (3819 kg ha⁻¹).

Kenya Agricultural Research Institute, Kenya

STEM RUST SCREENING NURSERY IN KENYA

OBJECTIVES

To screen the promising wheat genotypes against stem rust especially Ug-99 race

TREATMENTS & METHODOLOGY

Sixty five promising genotypes will be sent to KARI. Kenya with the coordination of National Wheat Coordinator, NARC., Islamabad and CIMMYT Pakistan for screening against stem rust especially Ug-99 race during 1st week of May, 2018. Stem rust data will be recorded in collaboration with the international breeders and pathologists. Recorded data will be provided by the organizers to collaborators.

PREVIOUS YEAR'S RESULTS

Material was rejected due to quarantine measures

SUMMER WHEAT SCREENING NURSERY, KAGHAN

OBJECTIVES

- •To screen the wheat germplasm against rusts and powdery mildew.
- •To incorporate effective rust resistant genes in local germplasm.
- •To select the resistant material for further studies.
- •To advance the generations for speedy variety development.

TREATMENT AND METHODOLOGY

About 1000 entries will be planted during last week of May, 2018 in single rows of 2 meters length. Around the planted material susceptible wheat variety (Morocco) will also be planted. Rusts and powdery mildew data will be recorded in August. Hybridization work will be carried out. Harvesting of fresh crosses and selected material will be done during the month of September, 2018 for evaluation at WRI, Faisalabad.

Previous Years' results

Not sown due to unavailability of land

PROJECTS

DEVELOPMENT OF NOVEL SALT TOLERANT FORAGE AND CEREAL CROPS

OBJECTIVES

To change the physiology of the wheat plant making it halophytic.

Treatment and Methodology

Wheat x Lophopyrum elongatum amphiploids has high levels of salt and water logging tolerance. A ph1c amphiploid (genomes AABBEE) will be crossed with the ph1b mutants of T. aestivum (genomes AABBDD). The homozygosity for the ph1 state will allow homologous recombination between the E and D chromosomes.

Recombinant inbreds and backcross recombinant inbred lines will be tested both for agronomic evaluation in field trials in Pakistan, and by simultaneous genotyping at North Dakota State University, USA.

Treatment and Methodology

Current year work plan

Salinity trials under Wheat Research Institute, Faisalabad.

Wheat Research Institute, Faisalabad.

Pacca Anna, Faisalabad.

Tandojam, Sindh.

• Salinity trials under Soil salinity Research Institute, Pindi Bhattian.

SSRI, Pindi Bhattian

- Amphiploid Yield Trial consists of following entries/varieties
 - AgCS, BeCS, CSLe, Yecora Rojo, Chinese spring, Ishi, Auqab-2000, Pasban-90 and Haider-93 Salinity levels (Low, Medium and High salinity)
- Soil analysis of amphiploid trials and minerals analysis of wheatgrass will be conducted.
- Data of biomass and grain yield of amphiploid trials will be recorded and analyzed.
- Training of one Pakistani scientist at UC, Davis.
- Two amphiploid viz AgCs and BeCs performed better than the checks under medium and high salinity levels

PREVIOUS YEAR'S RESULTS

Annual report 2016-17 (Under compilation)

WHEAT PRODUCTIVITY ENHANCEMENT PROGRAMME (W-PEP)

OBJECTIVES

To enhance wheat productivity by provision of high yielding varieties with rust resistance especially Ug99.

TREATMENTS & METHODOLOGY

This project has four objectives i.e.

Objective-1 (Surveillance), ii) Objective-2 (Host resistance), iii)
 Objective-3 (Breeding) and iv) Objective-4 (Seed). Work will be carried out according to specified plan of the project.

PREVIOUS YEAR'S RESULTS

Annual report W-PEP 2016-17

AGRICULTURAL INNOVATION PROGRAM (AIP) A- Yield loss assessment of wheat due to leaf rust using fungicides

OBJECTIVES

- Rust control in high yielding wheat cultivars by the application of fungicides
- To ascertain losses caused by rusts in wheat crop.

Treatment and Methodology

Will be mutually finalized by WRI and AIP scientists

PREVIOUS YEAR'S RESULTS

- Three sprays of Folicur 430SC, Tilt and Nativo gave best results in controlling leaf rust as compared to the remaining treatments on Seher -06 and Morocco while on resistant variety Ass-11, there is no edge of fungicides application.
- More than 90% plots under treatments lodged badly due to heavy rainfall and hailstorms during cropping season, therefore estimation of yield losses due to single factor i.e. leaf rust is very difficult and experiment need conformation of results.

AGRICULTURAL INNOVATION PROGRAM (AIP) bb-Diamond trial to ascertain the effect of using certified seed of new varieties

OBJECTIVES

To enhance wheat productivity by provision of high yielding varieties with rust resistance especially Ug99.

Treatment and Methodology

Varieties: 2 (One new and one old variety)

Treatments: 2 (Certified seed and farmer's own seed)

Plot size: 250 m²

PREVIOUS YEAR'S RESULTS

Annual report AIP 2016-17 (Under compilation)

AGRICULTURAL INNOVATION PROGRAM (AIP) Conservation trials (Agronomy)

OBJECTIVES

- Wheat planting in standing cotton
- Wheat-Rice-Wheat rotation
- Zero tillage in rice
- Direct seeded rice
- Bed planting of wheat

Treatment and Methodology

Will be mutually finalized by WRI and AIP scientists

PREVIOUS YEAR'S RESULTS

Annual report AIP 2016-17 (Under compilation)

NEW EXPERIMENTS

Breeding for climate smart wheat varieties (heat/drought tolerant)

OBJECTIVES

- •Screening of advance lines/varieties for water and heat stress environment with reference to climate change scenario.
- Association of grain filling period and grain size with grain yield.
- Screening of advance lines/genotypes under drought and heat stress at seedling stage

TREATMENTS & METHODOLOGY

Entries: Thirty, Checks: Fsd-08, Millet-11, Chakwal-50, Ujala-16 Sown Date: In triplicate under normal, drought (2ndweek of November) and heat (last week of December), Plot size: 2 rows x 2.5m, Design: RCBD.

OBSERVATIONS:

Days to heading, canopy temperature, NDVI, plant height, days to physiological maturity, 1000- grain weight and grain yield were recorded

- •The line SATYT-44, V-14262 and SATYT-34 has the highest grain yield 4294.79kg/ha, 3989.21 kg/ha and 3690.57 kg/ha respectively against check under normal irrigated conditions
- •The line V-14154 gave highest yield 3054.41 kg/ha under drought conditions
- •While SATYT-27, SATYT-26 and SATYT-13 has given 4218.39 kg/ha, 4137.83 kg/ha and 4117.00 kg/ha under heat stress conditions.

BREEDING FOR DEVELOPING ENRICHED IRON AND ZINC CONTENTS WHEAT LINES/CULTIVARS

OBJECTIVES

To develop high yielding, disease resistant, Iron and Zinc enriched lines

TREATMENTS & METHODOLOGY

- About 30 fresh crosses will be attempted to accumulate genes for high concentration of iron, zinc and low concentration of phytic acid.
- F₁ generation for the last year crosses will be studied

PREVIOUS YEAR'S RESULTS

About 25 crosses were made

EFFECT OF TEMPERATURE, HUMIDITY AND STORAGE PERIOD ON QUALITY AND GERMINATION BEHAVIOR OF CURRENT WHEAT VARIETIES

OBJECTIVES

To determine the impact of temperature, relative humidity and storage period on quality and germination behavior of current wheat varieties/lines.

TREATMENTS & METHODOLOGY

Four wheat varieties viz. Punjab-11, Millat-11, galaxy-13 and Ujala-16 along with four advanced wheat lines of the crop year 2015-16 and 2016-17 will be studied. Each variety/ line of the crop year 2015-16 and 2016-17 will be kept at 25°C and 40°C with 45% relative humidity and their quality characteristics and germination behavior will be tested after suitable time interval

PREVIOUS YEAR'S RESULTS

New experiment

PREPARATION OF CHAPATTI FROM ALEURON FLOUR

OBJECTIVES

To have benefits of functional properties of aleuoron flour (red dog).

TREATMENTS & METHODOLOGY

Grains of three promising varieties viz. Galaxy-13, Ujala-16 and Anaaj-17 will be collected and further be proceeded for fractional milling to get aleuron flour (red dog). The aleuron flour along with whole wheat flour of the relevant variety (control) will further be used to bake chapattis.

PREVIOUS YEAR'S RESULTS

New experiment

BIOFORTIFICATION OF WHEAT THROUGH APPLICATION OF AND ZINC AND IRON

OBJECTIVES

To improve the Fe and Zn concentration in wheat grain.

TREATMENTS & METHODOLOGY

Variety=Aanaj-17

Treatments				
T1	Control (No application of Fe & Zn)			
T2	Foliar application of 0.5 % ZnSO ₄			
T3	Foliar application of 1.0 % Fe SO ₄			
T4	Foliar application combination of ZnSO ₄ & Fe SO ₄			
T5	Soil application of 10 kg Zn ha ⁻¹			
T6	Soil application of 12 kg Fe ha ⁻¹			
T7	Soil application combination of Zn & Fe			

Iron and zinc will be incorporated in the soil at the time of seed bed preparation. Plant height (cm), productive tillers/m2, 1000-grain weight (g) and grain yield (kg ha-1) will be recorded in the field. Finally grain samples of all treatments will be analyzed for the determination of iron and zinc concentration.

PREVIOUS YEAR'S RESULTS

New experiment

Thanks